Phenotypic and molecular insights into CASK-related disorders in males

Standard

Phenotypic and molecular insights into CASK-related disorders in males. / Moog, Ute; Bierhals, Tatjana; Brand, Kristina; Bautsch, Jan; Biskup, Saskia; Brune, Thomas; Denecke, Jonas; de Die-Smulders, Christine E; Evers, Christina; Hempel, Maja; Henneke, Marco; Yntema, Helger; Menten, Björn; Pietz, Joachim; Pfundt, Rolph; Schmidtke, Jörg; Steinemann, Doris; Stumpel, Constance T; Van Maldergem, Lionel; Kutsche, Kerstin.

in: ORPHANET J RARE DIS, Jahrgang 10, Nr. 1, 12.04.2015, S. 44.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

Moog, U, Bierhals, T, Brand, K, Bautsch, J, Biskup, S, Brune, T, Denecke, J, de Die-Smulders, CE, Evers, C, Hempel, M, Henneke, M, Yntema, H, Menten, B, Pietz, J, Pfundt, R, Schmidtke, J, Steinemann, D, Stumpel, CT, Van Maldergem, L & Kutsche, K 2015, 'Phenotypic and molecular insights into CASK-related disorders in males', ORPHANET J RARE DIS, Jg. 10, Nr. 1, S. 44. https://doi.org/10.1186/s13023-015-0256-3

APA

Moog, U., Bierhals, T., Brand, K., Bautsch, J., Biskup, S., Brune, T., Denecke, J., de Die-Smulders, C. E., Evers, C., Hempel, M., Henneke, M., Yntema, H., Menten, B., Pietz, J., Pfundt, R., Schmidtke, J., Steinemann, D., Stumpel, C. T., Van Maldergem, L., & Kutsche, K. (2015). Phenotypic and molecular insights into CASK-related disorders in males. ORPHANET J RARE DIS, 10(1), 44. https://doi.org/10.1186/s13023-015-0256-3

Vancouver

Moog U, Bierhals T, Brand K, Bautsch J, Biskup S, Brune T et al. Phenotypic and molecular insights into CASK-related disorders in males. ORPHANET J RARE DIS. 2015 Apr 12;10(1):44. https://doi.org/10.1186/s13023-015-0256-3

Bibtex

@article{d868363fa46f4191ba4b4d48f3ba1d56,
title = "Phenotypic and molecular insights into CASK-related disorders in males",
abstract = "BACKGROUND: Heterozygous loss-of-function mutations in the X-linked CASK gene cause progressive microcephaly with pontine and cerebellar hypoplasia (MICPCH) and severe intellectual disability (ID) in females. Different CASK mutations have also been reported in males. The associated phenotypes range from nonsyndromic ID to Ohtahara syndrome with cerebellar hypoplasia. However, the phenotypic spectrum in males has not been systematically evaluated to date.METHODS: We identified a CASK alteration in 8 novel unrelated male patients by targeted Sanger sequencing, copy number analysis (MLPA and/or FISH) and array CGH. CASK transcripts were investigated by RT-PCR followed by sequencing. Immunoblotting was used to detect CASK protein in patient-derived cells. The clinical phenotype and natural history of the 8 patients and 28 CASK-mutation positive males reported previously were reviewed and correlated with available molecular data.RESULTS: CASK alterations include one nonsense mutation, one 5-bp deletion, one mutation of the start codon, and five partial gene deletions and duplications; seven were de novo, including three somatic mosaicisms, and one was familial. In three subjects, specific mRNA junction fragments indicated in tandem duplication of CASK exons that disrupted the integrity of the gene. The 5-bp deletion resulted in multiple aberrant CASK mRNAs. In fibroblasts from patients with a CASK loss-of-function mutation, no CASK protein could be detected. Individuals who are mosaic for a severe CASK mutation or carry a hypomorphic mutation still showed detectable amount of protein.CONCLUSIONS: Based on eight novel patients and all CASK-mutation positive males reported previously three phenotypic groups can be distinguished that represent a clinical continuum: (i) MICPCH with severe epileptic encephalopathy caused by hemizygous loss-of-function mutations, (ii) MICPCH associated with inactivating alterations in the mosaic state or a partly penetrant mutation, and (iii) syndromic/nonsyndromic mild to severe ID with or without nystagmus caused by CASK missense and splice mutations that leave the CASK protein intact but likely alter its function or reduce the amount of normal protein. Our findings facilitate focused testing of the CASK gene and interpreting sequence variants identified by next-generation sequencing in cases with a phenotype resembling either of the three groups.",
author = "Ute Moog and Tatjana Bierhals and Kristina Brand and Jan Bautsch and Saskia Biskup and Thomas Brune and Jonas Denecke and {de Die-Smulders}, {Christine E} and Christina Evers and Maja Hempel and Marco Henneke and Helger Yntema and Bj{\"o}rn Menten and Joachim Pietz and Rolph Pfundt and J{\"o}rg Schmidtke and Doris Steinemann and Stumpel, {Constance T} and {Van Maldergem}, Lionel and Kerstin Kutsche",
year = "2015",
month = apr,
day = "12",
doi = "10.1186/s13023-015-0256-3",
language = "English",
volume = "10",
pages = "44",
journal = "ORPHANET J RARE DIS",
issn = "1750-1172",
publisher = "BioMed Central Ltd.",
number = "1",

}

RIS

TY - JOUR

T1 - Phenotypic and molecular insights into CASK-related disorders in males

AU - Moog, Ute

AU - Bierhals, Tatjana

AU - Brand, Kristina

AU - Bautsch, Jan

AU - Biskup, Saskia

AU - Brune, Thomas

AU - Denecke, Jonas

AU - de Die-Smulders, Christine E

AU - Evers, Christina

AU - Hempel, Maja

AU - Henneke, Marco

AU - Yntema, Helger

AU - Menten, Björn

AU - Pietz, Joachim

AU - Pfundt, Rolph

AU - Schmidtke, Jörg

AU - Steinemann, Doris

AU - Stumpel, Constance T

AU - Van Maldergem, Lionel

AU - Kutsche, Kerstin

PY - 2015/4/12

Y1 - 2015/4/12

N2 - BACKGROUND: Heterozygous loss-of-function mutations in the X-linked CASK gene cause progressive microcephaly with pontine and cerebellar hypoplasia (MICPCH) and severe intellectual disability (ID) in females. Different CASK mutations have also been reported in males. The associated phenotypes range from nonsyndromic ID to Ohtahara syndrome with cerebellar hypoplasia. However, the phenotypic spectrum in males has not been systematically evaluated to date.METHODS: We identified a CASK alteration in 8 novel unrelated male patients by targeted Sanger sequencing, copy number analysis (MLPA and/or FISH) and array CGH. CASK transcripts were investigated by RT-PCR followed by sequencing. Immunoblotting was used to detect CASK protein in patient-derived cells. The clinical phenotype and natural history of the 8 patients and 28 CASK-mutation positive males reported previously were reviewed and correlated with available molecular data.RESULTS: CASK alterations include one nonsense mutation, one 5-bp deletion, one mutation of the start codon, and five partial gene deletions and duplications; seven were de novo, including three somatic mosaicisms, and one was familial. In three subjects, specific mRNA junction fragments indicated in tandem duplication of CASK exons that disrupted the integrity of the gene. The 5-bp deletion resulted in multiple aberrant CASK mRNAs. In fibroblasts from patients with a CASK loss-of-function mutation, no CASK protein could be detected. Individuals who are mosaic for a severe CASK mutation or carry a hypomorphic mutation still showed detectable amount of protein.CONCLUSIONS: Based on eight novel patients and all CASK-mutation positive males reported previously three phenotypic groups can be distinguished that represent a clinical continuum: (i) MICPCH with severe epileptic encephalopathy caused by hemizygous loss-of-function mutations, (ii) MICPCH associated with inactivating alterations in the mosaic state or a partly penetrant mutation, and (iii) syndromic/nonsyndromic mild to severe ID with or without nystagmus caused by CASK missense and splice mutations that leave the CASK protein intact but likely alter its function or reduce the amount of normal protein. Our findings facilitate focused testing of the CASK gene and interpreting sequence variants identified by next-generation sequencing in cases with a phenotype resembling either of the three groups.

AB - BACKGROUND: Heterozygous loss-of-function mutations in the X-linked CASK gene cause progressive microcephaly with pontine and cerebellar hypoplasia (MICPCH) and severe intellectual disability (ID) in females. Different CASK mutations have also been reported in males. The associated phenotypes range from nonsyndromic ID to Ohtahara syndrome with cerebellar hypoplasia. However, the phenotypic spectrum in males has not been systematically evaluated to date.METHODS: We identified a CASK alteration in 8 novel unrelated male patients by targeted Sanger sequencing, copy number analysis (MLPA and/or FISH) and array CGH. CASK transcripts were investigated by RT-PCR followed by sequencing. Immunoblotting was used to detect CASK protein in patient-derived cells. The clinical phenotype and natural history of the 8 patients and 28 CASK-mutation positive males reported previously were reviewed and correlated with available molecular data.RESULTS: CASK alterations include one nonsense mutation, one 5-bp deletion, one mutation of the start codon, and five partial gene deletions and duplications; seven were de novo, including three somatic mosaicisms, and one was familial. In three subjects, specific mRNA junction fragments indicated in tandem duplication of CASK exons that disrupted the integrity of the gene. The 5-bp deletion resulted in multiple aberrant CASK mRNAs. In fibroblasts from patients with a CASK loss-of-function mutation, no CASK protein could be detected. Individuals who are mosaic for a severe CASK mutation or carry a hypomorphic mutation still showed detectable amount of protein.CONCLUSIONS: Based on eight novel patients and all CASK-mutation positive males reported previously three phenotypic groups can be distinguished that represent a clinical continuum: (i) MICPCH with severe epileptic encephalopathy caused by hemizygous loss-of-function mutations, (ii) MICPCH associated with inactivating alterations in the mosaic state or a partly penetrant mutation, and (iii) syndromic/nonsyndromic mild to severe ID with or without nystagmus caused by CASK missense and splice mutations that leave the CASK protein intact but likely alter its function or reduce the amount of normal protein. Our findings facilitate focused testing of the CASK gene and interpreting sequence variants identified by next-generation sequencing in cases with a phenotype resembling either of the three groups.

U2 - 10.1186/s13023-015-0256-3

DO - 10.1186/s13023-015-0256-3

M3 - SCORING: Journal article

C2 - 25886057

VL - 10

SP - 44

JO - ORPHANET J RARE DIS

JF - ORPHANET J RARE DIS

SN - 1750-1172

IS - 1

ER -