Glucocorticoids target the CXCL9/CXCL10-CXCR3 axis and confer protection against immune-mediated kidney injury

Standard

Glucocorticoids target the CXCL9/CXCL10-CXCR3 axis and confer protection against immune-mediated kidney injury. / Riedel, Jan-Hendrik; Robben, Lennart; Paust, Hans-Joachim; Zhao, Yu; Asada, Nariaki; Song, Ning; Peters, Anett; Kaffke, Anna; Borchers, Alina C; Tiegs, Gisa; Seifert, Larissa; Tomas, Nicola M; Hoxha, Elion; Wenzel, Ulrich O; Huber, Tobias B; Wiech, Thorsten; Turner, Jan-Eric; Krebs, Christian F; Panzer, Ulf.

In: JCI INSIGHT, Vol. 8, No. 1, e160251, 10.01.2023.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{3a8cdc958b45471ea2d6c95f4c471501,
title = "Glucocorticoids target the CXCL9/CXCL10-CXCR3 axis and confer protection against immune-mediated kidney injury",
abstract = "Glucocorticoids remain a cornerstone of therapeutic regimes for autoimmune and chronic inflammatory diseases - for example, in different forms of crescentic glomerulonephritis - because of their rapid antiinflammatory effects, low cost, and wide availability. Despite their routine use for decades, the underlying cellular mechanisms by which steroids exert their therapeutic effects need to be fully elucidated. Here, we demonstrate that high-dose steroid treatment rapidly reduced the number of proinflammatory CXCR3+CD4+ T cells in the kidney by combining high-dimensional single-cell and morphological analyses of kidney biopsies from patients with antineutrophil cytoplasmic antibody-associated (ANCA-associated) crescentic glomerulonephritis. Using an experimental model of crescentic glomerulonephritis, we show that the steroid-induced decrease in renal CD4+ T cells is a consequence of reduced T cell recruitment, which is associated with an ameliorated disease course. Mechanistic in vivo and in vitro studies revealed that steroids act directly on renal tissue cells, such as tubular epithelial cells, but not on T cells, which resulted in an abolished renal expression of CXCL9 and CXCL10 as well as in the prevention of CXCR3+CD4+ T cell recruitment to the inflamed kidneys. Thus, we identified the CXCL9/CXCL10-CXCR3 axis as a previously unrecognized cellular and molecular target of glucocorticoids providing protection from immune-mediated pathology.",
author = "Jan-Hendrik Riedel and Lennart Robben and Hans-Joachim Paust and Yu Zhao and Nariaki Asada and Ning Song and Anett Peters and Anna Kaffke and Borchers, {Alina C} and Gisa Tiegs and Larissa Seifert and Tomas, {Nicola M} and Elion Hoxha and Wenzel, {Ulrich O} and Huber, {Tobias B} and Thorsten Wiech and Jan-Eric Turner and Krebs, {Christian F} and Ulf Panzer",
year = "2023",
month = jan,
day = "10",
doi = "10.1172/jci.insight.160251",
language = "English",
volume = "8",
journal = "JCI INSIGHT",
issn = "2379-3708",
publisher = "The American Society for Clinical Investigation",
number = "1",

}

RIS

TY - JOUR

T1 - Glucocorticoids target the CXCL9/CXCL10-CXCR3 axis and confer protection against immune-mediated kidney injury

AU - Riedel, Jan-Hendrik

AU - Robben, Lennart

AU - Paust, Hans-Joachim

AU - Zhao, Yu

AU - Asada, Nariaki

AU - Song, Ning

AU - Peters, Anett

AU - Kaffke, Anna

AU - Borchers, Alina C

AU - Tiegs, Gisa

AU - Seifert, Larissa

AU - Tomas, Nicola M

AU - Hoxha, Elion

AU - Wenzel, Ulrich O

AU - Huber, Tobias B

AU - Wiech, Thorsten

AU - Turner, Jan-Eric

AU - Krebs, Christian F

AU - Panzer, Ulf

PY - 2023/1/10

Y1 - 2023/1/10

N2 - Glucocorticoids remain a cornerstone of therapeutic regimes for autoimmune and chronic inflammatory diseases - for example, in different forms of crescentic glomerulonephritis - because of their rapid antiinflammatory effects, low cost, and wide availability. Despite their routine use for decades, the underlying cellular mechanisms by which steroids exert their therapeutic effects need to be fully elucidated. Here, we demonstrate that high-dose steroid treatment rapidly reduced the number of proinflammatory CXCR3+CD4+ T cells in the kidney by combining high-dimensional single-cell and morphological analyses of kidney biopsies from patients with antineutrophil cytoplasmic antibody-associated (ANCA-associated) crescentic glomerulonephritis. Using an experimental model of crescentic glomerulonephritis, we show that the steroid-induced decrease in renal CD4+ T cells is a consequence of reduced T cell recruitment, which is associated with an ameliorated disease course. Mechanistic in vivo and in vitro studies revealed that steroids act directly on renal tissue cells, such as tubular epithelial cells, but not on T cells, which resulted in an abolished renal expression of CXCL9 and CXCL10 as well as in the prevention of CXCR3+CD4+ T cell recruitment to the inflamed kidneys. Thus, we identified the CXCL9/CXCL10-CXCR3 axis as a previously unrecognized cellular and molecular target of glucocorticoids providing protection from immune-mediated pathology.

AB - Glucocorticoids remain a cornerstone of therapeutic regimes for autoimmune and chronic inflammatory diseases - for example, in different forms of crescentic glomerulonephritis - because of their rapid antiinflammatory effects, low cost, and wide availability. Despite their routine use for decades, the underlying cellular mechanisms by which steroids exert their therapeutic effects need to be fully elucidated. Here, we demonstrate that high-dose steroid treatment rapidly reduced the number of proinflammatory CXCR3+CD4+ T cells in the kidney by combining high-dimensional single-cell and morphological analyses of kidney biopsies from patients with antineutrophil cytoplasmic antibody-associated (ANCA-associated) crescentic glomerulonephritis. Using an experimental model of crescentic glomerulonephritis, we show that the steroid-induced decrease in renal CD4+ T cells is a consequence of reduced T cell recruitment, which is associated with an ameliorated disease course. Mechanistic in vivo and in vitro studies revealed that steroids act directly on renal tissue cells, such as tubular epithelial cells, but not on T cells, which resulted in an abolished renal expression of CXCL9 and CXCL10 as well as in the prevention of CXCR3+CD4+ T cell recruitment to the inflamed kidneys. Thus, we identified the CXCL9/CXCL10-CXCR3 axis as a previously unrecognized cellular and molecular target of glucocorticoids providing protection from immune-mediated pathology.

U2 - 10.1172/jci.insight.160251

DO - 10.1172/jci.insight.160251

M3 - SCORING: Journal article

C2 - 36355429

VL - 8

JO - JCI INSIGHT

JF - JCI INSIGHT

SN - 2379-3708

IS - 1

M1 - e160251

ER -