Alternative splicing in the regulatory region of the human phosphatases CDC25A and CDC25C.

Abstract

CDC25 phosphatases play key roles in cell proliferation by activating cell cycle-specific cyclin-dependent kinases (CDKs). We identified four new splice variants in the amino-terminal regulatory region of human cdc25C and one in cdc25A. All variants except one retain an intact catalytic domain. Alternative splicing results in loss of phosphorylation sites for kinases like CDK and the calcium/calmodulin-dependent kinase II (CaMKII), which influence CDC25 activity and compartmental localization. In NT2 teratocarcinoma cells, induced for nerve cell differentiation, the smaller sized variant of cdc25C was upregulated. At the protein level both phosphorylation state and isoform distribution differed between cell lines and cell cycle phases.

Bibliographical data

Original languageGerman
Article number11
ISSN0171-9335
Publication statusPublished - 2000
pubmed 11139144