Oscillatory entrainment of primary somatosensory cortex encodes visual control of tactile processing.

Abstract

Optimal behavior relies on the successful integration of complementary information from multiple senses. The neural mechanisms underlying multisensory interactions are still poorly understood. Here, we demonstrate the critical role of neural network oscillations and direct connectivity between primary sensory cortices in visual-somatosensory interactions. Extracellular recordings from all layers of the barrel field in Brown Norway rats in vivo showed that bimodal stimulation (simultaneous light flash and whisker deflection) augmented the somatosensory-evoked response and changed the power of induced network oscillations by resetting their phase. Anatomical tracing revealed sparse direct connectivity between primary visual (V1) and somatosensory (S1) cortices. Pharmacological silencing of V1 diminished but did not abolish cross-modal effects on S1 oscillatory activity, while leaving the early enhancement of the evoked response unaffected. Thus, visual stimuli seem to impact tactile processing by modulating network oscillations in S1 via corticocortical projections and subcortical feedforward interactions.

Bibliografische Daten

OriginalspracheEnglisch
Aufsatznummer13
ISSN0270-6474
DOIs
StatusVeröffentlicht - 2013
pubmed 23536087