Multiple instance ensembling for paranasal anomaly classification in the maxillary sinus
Standard
Multiple instance ensembling for paranasal anomaly classification in the maxillary sinus. / Bhattacharya, Debayan; Behrendt, Finn; Becker, Benjamin Tobias; Beyersdorff, Dirk; Petersen, Elina; Petersen, Marvin; Cheng, Bastian; Eggert, Dennis; Betz, Christian; Hoffmann, Anna Sophie; Schlaefer, Alexander.
in: INT J COMPUT ASS RAD, Jahrgang 19, Nr. 2, 02.2024, S. 223–231.Publikationen: SCORING: Beitrag in Fachzeitschrift/Zeitung › SCORING: Zeitschriftenaufsatz › Forschung › Begutachtung
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Multiple instance ensembling for paranasal anomaly classification in the maxillary sinus
AU - Bhattacharya, Debayan
AU - Behrendt, Finn
AU - Becker, Benjamin Tobias
AU - Beyersdorff, Dirk
AU - Petersen, Elina
AU - Petersen, Marvin
AU - Cheng, Bastian
AU - Eggert, Dennis
AU - Betz, Christian
AU - Hoffmann, Anna Sophie
AU - Schlaefer, Alexander
N1 - © 2023. The Author(s).
PY - 2024/2
Y1 - 2024/2
N2 - PURPOSE: Paranasal anomalies are commonly discovered during routine radiological screenings and can present with a wide range of morphological features. This diversity can make it difficult for convolutional neural networks (CNNs) to accurately classify these anomalies, especially when working with limited datasets. Additionally, current approaches to paranasal anomaly classification are constrained to identifying a single anomaly at a time. These challenges necessitate the need for further research and development in this area.METHODS: We investigate the feasibility of using a 3D convolutional neural network (CNN) to classify healthy maxillary sinuses (MS) and MS with polyps or cysts. The task of accurately localizing the relevant MS volume within larger head and neck Magnetic Resonance Imaging (MRI) scans can be difficult, but we develop a strategy which includes the use of a novel sampling technique that not only effectively localizes the relevant MS volume, but also increases the size of the training dataset and improves classification results. Additionally, we employ a Multiple Instance Ensembling (MIE) prediction method to further boost classification performance.RESULTS: With sampling and MIE, we observe that there is consistent improvement in classification performance of all 3D ResNet and 3D DenseNet architecture with an average AUPRC percentage increase of 21.86 ± 11.92% and 4.27 ± 5.04% by sampling and 28.86 ± 12.80% and 9.85 ± 4.02% by sampling and MIE, respectively.CONCLUSION: Sampling and MIE can be effective techniques to improve the generalizability of CNNs for paranasal anomaly classification. We demonstrate the feasibility of classifying anomalies in the MS. We propose a data enlarging strategy through sampling alongside a novel MIE strategy that proves to be beneficial for paranasal anomaly classification in the MS.
AB - PURPOSE: Paranasal anomalies are commonly discovered during routine radiological screenings and can present with a wide range of morphological features. This diversity can make it difficult for convolutional neural networks (CNNs) to accurately classify these anomalies, especially when working with limited datasets. Additionally, current approaches to paranasal anomaly classification are constrained to identifying a single anomaly at a time. These challenges necessitate the need for further research and development in this area.METHODS: We investigate the feasibility of using a 3D convolutional neural network (CNN) to classify healthy maxillary sinuses (MS) and MS with polyps or cysts. The task of accurately localizing the relevant MS volume within larger head and neck Magnetic Resonance Imaging (MRI) scans can be difficult, but we develop a strategy which includes the use of a novel sampling technique that not only effectively localizes the relevant MS volume, but also increases the size of the training dataset and improves classification results. Additionally, we employ a Multiple Instance Ensembling (MIE) prediction method to further boost classification performance.RESULTS: With sampling and MIE, we observe that there is consistent improvement in classification performance of all 3D ResNet and 3D DenseNet architecture with an average AUPRC percentage increase of 21.86 ± 11.92% and 4.27 ± 5.04% by sampling and 28.86 ± 12.80% and 9.85 ± 4.02% by sampling and MIE, respectively.CONCLUSION: Sampling and MIE can be effective techniques to improve the generalizability of CNNs for paranasal anomaly classification. We demonstrate the feasibility of classifying anomalies in the MS. We propose a data enlarging strategy through sampling alongside a novel MIE strategy that proves to be beneficial for paranasal anomaly classification in the MS.
U2 - 10.1007/s11548-023-02990-3
DO - 10.1007/s11548-023-02990-3
M3 - SCORING: Journal article
C2 - 37479942
VL - 19
SP - 223
EP - 231
JO - INT J COMPUT ASS RAD
JF - INT J COMPUT ASS RAD
SN - 1861-6410
IS - 2
ER -