Mucolipidosis II-related mutations inhibit the exit from the endoplasmic reticulum and proteolytic cleavage of GlcNAc-1-phosphotransferase precursor protein (GNPTAB)

Standard

Mucolipidosis II-related mutations inhibit the exit from the endoplasmic reticulum and proteolytic cleavage of GlcNAc-1-phosphotransferase precursor protein (GNPTAB). / De Pace, Raffaella; Coutinho, Maria Francisca; Nolte, Friedrich; Haag, Friedrich; Prata, Maria João; Alves, Sandra; Braulke, Thomas; Pohl, Sandra.

in: HUM MUTAT, Jahrgang 35, Nr. 3, 01.03.2014, S. 368-76.

Publikationen: SCORING: Beitrag in Fachzeitschrift/ZeitungSCORING: ZeitschriftenaufsatzForschungBegutachtung

Harvard

APA

Vancouver

Bibtex

@article{a9384fe4f00044408f4a243ebd01bb09,
title = "Mucolipidosis II-related mutations inhibit the exit from the endoplasmic reticulum and proteolytic cleavage of GlcNAc-1-phosphotransferase precursor protein (GNPTAB)",
abstract = "Mucolipidosis (ML) II and MLIII alpha/beta are two pediatric lysosomal storage disorders caused by mutations in the GNPTAB gene, which encodes an α/β-subunit precursor protein of GlcNAc-1-phosphotransferase. Considerable variations in the onset and severity of the clinical phenotype in these diseases are observed. We report here on expression studies of two missense mutations c.242G>T (p.Trp81Leu) and c.2956C>T (p.Arg986Cys) and two frameshift mutations c.3503_3504delTC (p.Leu1168GlnfsX5) and c.3145insC (p.Gly1049ArgfsX16) present in severely affected MLII patients, as well as two missense mutations c.1196C>T (p.Ser399Phe) and c.3707A>T (p.Lys1236Met) reported in more mild affected individuals. We generated a novel α-subunit-specific monoclonal antibody, allowing the analysis of the expression, subcellular localization, and proteolytic activation of wild-type and mutant α/β-subunit precursor proteins by Western blotting and immunofluorescence microscopy. In general, we found that both missense and frameshift mutations that are associated with a severe clinical phenotype cause retention of the encoded protein in the endoplasmic reticulum and failure to cleave the α/β-subunit precursor protein are associated with a severe clinical phenotype with the exception of p.Ser399Phe found in MLIII alpha/beta. Our data provide new insights into structural requirements for localization and activity of GlcNAc-1-phosphotransferase that may help to explain the clinical phenotype of MLII patients.",
author = "{De Pace}, Raffaella and Coutinho, {Maria Francisca} and Friedrich Nolte and Friedrich Haag and Prata, {Maria Jo{\~a}o} and Sandra Alves and Thomas Braulke and Sandra Pohl",
note = "{\textcopyright} 2013 WILEY PERIODICALS, INC.",
year = "2014",
month = mar,
day = "1",
doi = "10.1002/humu.22502",
language = "English",
volume = "35",
pages = "368--76",
journal = "HUM MUTAT",
issn = "1059-7794",
publisher = "Wiley-Liss Inc.",
number = "3",

}

RIS

TY - JOUR

T1 - Mucolipidosis II-related mutations inhibit the exit from the endoplasmic reticulum and proteolytic cleavage of GlcNAc-1-phosphotransferase precursor protein (GNPTAB)

AU - De Pace, Raffaella

AU - Coutinho, Maria Francisca

AU - Nolte, Friedrich

AU - Haag, Friedrich

AU - Prata, Maria João

AU - Alves, Sandra

AU - Braulke, Thomas

AU - Pohl, Sandra

N1 - © 2013 WILEY PERIODICALS, INC.

PY - 2014/3/1

Y1 - 2014/3/1

N2 - Mucolipidosis (ML) II and MLIII alpha/beta are two pediatric lysosomal storage disorders caused by mutations in the GNPTAB gene, which encodes an α/β-subunit precursor protein of GlcNAc-1-phosphotransferase. Considerable variations in the onset and severity of the clinical phenotype in these diseases are observed. We report here on expression studies of two missense mutations c.242G>T (p.Trp81Leu) and c.2956C>T (p.Arg986Cys) and two frameshift mutations c.3503_3504delTC (p.Leu1168GlnfsX5) and c.3145insC (p.Gly1049ArgfsX16) present in severely affected MLII patients, as well as two missense mutations c.1196C>T (p.Ser399Phe) and c.3707A>T (p.Lys1236Met) reported in more mild affected individuals. We generated a novel α-subunit-specific monoclonal antibody, allowing the analysis of the expression, subcellular localization, and proteolytic activation of wild-type and mutant α/β-subunit precursor proteins by Western blotting and immunofluorescence microscopy. In general, we found that both missense and frameshift mutations that are associated with a severe clinical phenotype cause retention of the encoded protein in the endoplasmic reticulum and failure to cleave the α/β-subunit precursor protein are associated with a severe clinical phenotype with the exception of p.Ser399Phe found in MLIII alpha/beta. Our data provide new insights into structural requirements for localization and activity of GlcNAc-1-phosphotransferase that may help to explain the clinical phenotype of MLII patients.

AB - Mucolipidosis (ML) II and MLIII alpha/beta are two pediatric lysosomal storage disorders caused by mutations in the GNPTAB gene, which encodes an α/β-subunit precursor protein of GlcNAc-1-phosphotransferase. Considerable variations in the onset and severity of the clinical phenotype in these diseases are observed. We report here on expression studies of two missense mutations c.242G>T (p.Trp81Leu) and c.2956C>T (p.Arg986Cys) and two frameshift mutations c.3503_3504delTC (p.Leu1168GlnfsX5) and c.3145insC (p.Gly1049ArgfsX16) present in severely affected MLII patients, as well as two missense mutations c.1196C>T (p.Ser399Phe) and c.3707A>T (p.Lys1236Met) reported in more mild affected individuals. We generated a novel α-subunit-specific monoclonal antibody, allowing the analysis of the expression, subcellular localization, and proteolytic activation of wild-type and mutant α/β-subunit precursor proteins by Western blotting and immunofluorescence microscopy. In general, we found that both missense and frameshift mutations that are associated with a severe clinical phenotype cause retention of the encoded protein in the endoplasmic reticulum and failure to cleave the α/β-subunit precursor protein are associated with a severe clinical phenotype with the exception of p.Ser399Phe found in MLIII alpha/beta. Our data provide new insights into structural requirements for localization and activity of GlcNAc-1-phosphotransferase that may help to explain the clinical phenotype of MLII patients.

U2 - 10.1002/humu.22502

DO - 10.1002/humu.22502

M3 - SCORING: Journal article

C2 - 24375680

VL - 35

SP - 368

EP - 376

JO - HUM MUTAT

JF - HUM MUTAT

SN - 1059-7794

IS - 3

ER -