Implantation of engineered tissue in the rat heart

  • Bjoern Sill
  • Ivan V Alpatov
  • Christina A Pacak
  • Douglas B Cowan

Abstract

Rodent surgery is often an important component in assessing the utility of engineered tissues. A wide variety of surgical procedures can be performed in common laboratory rats or mice and these quite frequently serve as an intermediate step between bench-top experiments and large animal testing or human trials. Given that rodents provide an established, cost-effective, and physiologically-relevant model system in which to test novel combinations of scaffolding materials and cells, they are particularly well-suited for cardiovascular tissue engineering studies. Presently, we describe an open-heart surgical procedure to implant engineered tissue containing myogenic progenitor cells in the atrioventricular (AV) groove of a rat heart. These implants are intended to create an electrical conduit between the right atrium and right ventricle with the ultimate goal of providing an alternative treatment to conventional pacemaker implantation in pediatric patients with complete heart block. The engineered tissue is implanted in the AV-groove by means of a thoracotomy. For our purposes, Lewis rats are anesthetized and invasively ventilated to maintain positive airway pressure during the sterile surgical procedure. The approach to the heart is performed by a right thoracotomy through an antero-lateral incision at the 5(th) intercostal space. The tissue construct is fixed in the AV groove using a single 7-0 Prolene suture and positioned between the right ventricle and atrium at the ventral portion of the heart. The epicardium is partially removed to allow direct contact between the recipient myocardial cells and those contained in the engineered tissue. Following implantation, the chest wall is closed in layers, any pneumothorax is evacuated, and the animal is extubated and treated with analgesic.

Bibliografische Daten

OriginalspracheEnglisch
ISSN1940-087X
DOIs
StatusVeröffentlicht - 24.06.2009
PubMed 19553905