Disruption of erythroid K-Cl cotransporters alters erythrocyte volume and partially rescues erythrocyte dehydration in SAD mice.

  • Marco B Rust
  • Seth L Alper
  • York Rudhard
  • Boris E Shmukler
  • Rubén Vicente
  • Carlo Brugnara
  • Marie Trudel
  • Thomas J Jentsch
  • Christian Hübner

Beteiligte Einrichtungen

Abstract

K-Cl cotransport activity in rbc is a major determinant of rbc volume and density. Pathologic activation of erythroid K-Cl cotransport activity in sickle cell disease contributes to rbc dehydration and cell sickling. To address the roles of individual K-Cl cotransporter isoforms in rbc volume homeostasis, we disrupted the Kcc1 and Kcc3 genes in mice. As rbc K-Cl cotransport activity was undiminished in Kcc1(-/-) mice, decreased in Kcc3(-/-) mice, and almost completely abolished in mice lacking both isoforms, we conclude that K-Cl cotransport activity of mouse rbc is mediated largely by KCC3. Whereas rbc of either Kcc1(-/-) or Kcc3(-/-) mice were of normal density, rbc of Kcc1(-/-)Kcc3(-/-) mice exhibited defective volume regulation, including increased mean corpuscular volume, decreased density, and increased susceptibility to osmotic lysis. K-Cl cotransport activity was increased in rbc of SAD mice, which are transgenic for a hypersickling human hemoglobin S variant. Kcc1(-/-)Kcc3(-/-) SAD rbc lacked nearly all K-Cl cotransport activity and exhibited normalized values of mean corpuscular volume, corpuscular hemoglobin concentration mean, and K(+) content. Although disruption of K-Cl cotransport rescued the dehydration phenotype of most SAD rbc, the proportion of the densest red blood cell population remained unaffected.

Bibliografische Daten

OriginalspracheDeutsch
Aufsatznummer6
ISSN0021-9738
StatusVeröffentlicht - 2007
pubmed 17510708