The orally available, synthetic ether lipid edelfosine inhibits T cell proliferation and induces a type I interferon response

Standard

The orally available, synthetic ether lipid edelfosine inhibits T cell proliferation and induces a type I interferon response. / Abramowski, Pierre; Otto, Benjamin; Martin, Roland.

In: PLOS ONE, Vol. 9, No. 3, 25.03.2014, p. e91970.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{7a98729a8c4e40f48981df0b48fb5247,
title = "The orally available, synthetic ether lipid edelfosine inhibits T cell proliferation and induces a type I interferon response",
abstract = "The drug edelfosine is a synthetic analog of 2-lysophosphatidylcholine. Edelfosine is incorporated by highly proliferating cells, e.g. activated immune cells. It acts on cellular membranes by selectively aggregating the cell death receptor Fas in membrane rafts and interference with phosphatidylcholine (PC) synthesis with subsequent induction of apoptosis. Edelfosine has been proposed for the treatment of autoimmune diseases like multiple sclerosis (MS). Earlier studies on the animal model of MS, experimental autoimmune encephalomyelitis (EAE), have generated first evidence for the efficacy of edelfosine treatment. However, it is unknown if the previously described mechanisms for edelfosine action, which are derived from in vitro studies, are solely responsible for the amelioration of EAE or if edelfosine may exert additional effects, which may be beneficial in the context of autoimmunity. Since it was the purpose of our studies to assess the potential usefulness of edelfosine for the treatment of MS, we examined its mechanism/s of action on immune functions in human T cells. Low doses of edelfosine led to a decrease in homeostatic proliferation, and further studies of the mechanism/s of action by genome-wide transcriptional profiling showed that edelfosine reduces the expression of MHC class II molecules, of molecules involved in MHC class II-associated processing and presentation, and finally upregulated a series of type I interferon-associated genes. The inhibition of homeostatic proliferation, as well as the effects on MHC class II expression and -presentation, and the induction of type I interferon-associated genes are novel and interesting in the context of developing edelfosine for clinical use in MS and possibly also other T cell-mediated autoimmune diseases.",
author = "Pierre Abramowski and Benjamin Otto and Roland Martin",
year = "2014",
month = mar,
day = "25",
doi = "10.1371/journal.pone.0091970",
language = "English",
volume = "9",
pages = "e91970",
journal = "PLOS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "3",

}

RIS

TY - JOUR

T1 - The orally available, synthetic ether lipid edelfosine inhibits T cell proliferation and induces a type I interferon response

AU - Abramowski, Pierre

AU - Otto, Benjamin

AU - Martin, Roland

PY - 2014/3/25

Y1 - 2014/3/25

N2 - The drug edelfosine is a synthetic analog of 2-lysophosphatidylcholine. Edelfosine is incorporated by highly proliferating cells, e.g. activated immune cells. It acts on cellular membranes by selectively aggregating the cell death receptor Fas in membrane rafts and interference with phosphatidylcholine (PC) synthesis with subsequent induction of apoptosis. Edelfosine has been proposed for the treatment of autoimmune diseases like multiple sclerosis (MS). Earlier studies on the animal model of MS, experimental autoimmune encephalomyelitis (EAE), have generated first evidence for the efficacy of edelfosine treatment. However, it is unknown if the previously described mechanisms for edelfosine action, which are derived from in vitro studies, are solely responsible for the amelioration of EAE or if edelfosine may exert additional effects, which may be beneficial in the context of autoimmunity. Since it was the purpose of our studies to assess the potential usefulness of edelfosine for the treatment of MS, we examined its mechanism/s of action on immune functions in human T cells. Low doses of edelfosine led to a decrease in homeostatic proliferation, and further studies of the mechanism/s of action by genome-wide transcriptional profiling showed that edelfosine reduces the expression of MHC class II molecules, of molecules involved in MHC class II-associated processing and presentation, and finally upregulated a series of type I interferon-associated genes. The inhibition of homeostatic proliferation, as well as the effects on MHC class II expression and -presentation, and the induction of type I interferon-associated genes are novel and interesting in the context of developing edelfosine for clinical use in MS and possibly also other T cell-mediated autoimmune diseases.

AB - The drug edelfosine is a synthetic analog of 2-lysophosphatidylcholine. Edelfosine is incorporated by highly proliferating cells, e.g. activated immune cells. It acts on cellular membranes by selectively aggregating the cell death receptor Fas in membrane rafts and interference with phosphatidylcholine (PC) synthesis with subsequent induction of apoptosis. Edelfosine has been proposed for the treatment of autoimmune diseases like multiple sclerosis (MS). Earlier studies on the animal model of MS, experimental autoimmune encephalomyelitis (EAE), have generated first evidence for the efficacy of edelfosine treatment. However, it is unknown if the previously described mechanisms for edelfosine action, which are derived from in vitro studies, are solely responsible for the amelioration of EAE or if edelfosine may exert additional effects, which may be beneficial in the context of autoimmunity. Since it was the purpose of our studies to assess the potential usefulness of edelfosine for the treatment of MS, we examined its mechanism/s of action on immune functions in human T cells. Low doses of edelfosine led to a decrease in homeostatic proliferation, and further studies of the mechanism/s of action by genome-wide transcriptional profiling showed that edelfosine reduces the expression of MHC class II molecules, of molecules involved in MHC class II-associated processing and presentation, and finally upregulated a series of type I interferon-associated genes. The inhibition of homeostatic proliferation, as well as the effects on MHC class II expression and -presentation, and the induction of type I interferon-associated genes are novel and interesting in the context of developing edelfosine for clinical use in MS and possibly also other T cell-mediated autoimmune diseases.

U2 - 10.1371/journal.pone.0091970

DO - 10.1371/journal.pone.0091970

M3 - SCORING: Journal article

C2 - 24667731

VL - 9

SP - e91970

JO - PLOS ONE

JF - PLOS ONE

SN - 1932-6203

IS - 3

ER -