The mosaic receptor sorLA/LR11 binds components of the plasminogen-activating system and platelet-derived growth factor-BB similarly to LRP1 (low-density lipoprotein receptor-related protein), but mediates slow internalization of bound ligand.

Standard

The mosaic receptor sorLA/LR11 binds components of the plasminogen-activating system and platelet-derived growth factor-BB similarly to LRP1 (low-density lipoprotein receptor-related protein), but mediates slow internalization of bound ligand. / Gliemann, Jørgen; Hermey, Guido; Nykjaer, Anders; Petersen, Claus M; Jacobsen, Christian; Andreasen, Peter A.

In: BIOCHEM J, Vol. 381, No. 1, 1, 2004, p. 203-212.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{60083f23a94846cab361c709f90cc5e9,
title = "The mosaic receptor sorLA/LR11 binds components of the plasminogen-activating system and platelet-derived growth factor-BB similarly to LRP1 (low-density lipoprotein receptor-related protein), but mediates slow internalization of bound ligand.",
abstract = "The type-1 receptor sorLA/LR11, a member of the Vps10p-domain receptor family that also contains domains characterizing members of the LDL (low-density lipoprotein) receptor family, has been shown to induce increased uPAR (urokinase receptor) expression as well as enhanced migration and invasion activities in smooth muscle cells in the presence of PDGF-BB (platelet-derived growth factor-BB). Here we show that sorLA interacts with both components of the plasminogen activating system and PDGF-BB similarly to LRP1 (LDL receptor-related protein/alpha2-macroglobulin receptor), which is an important clearance receptor with established functions in controlling uPAR expression as well as PDGF-BB signalling. In contrast with LRP1, sorLA does not interact with alpha2-macroglobulin, which is a binding protein for several growth factors, including PDGF-BB. By using LRP1-deficient cells transfected with sorLA, we demonstrate that sorLA-bound ligand is internalized at a much lower rate than LRP1-bound ligand, and that sorLA is inefficient in regulating cell surface uPAR expression, which depends on rapid internalization of the ternary complex between urokinase-type plasminogen activator, its type-1 inhibitor, and uPAR. Thus, although overlapping with regard to binding profiles, sorLA is substantially less efficient as a clearance receptor than LRP1. We propose that sorLA can divert ligands away from LRP1 and thereby inhibit both their clearance and signalling events mediated by LRP1.",
author = "J{\o}rgen Gliemann and Guido Hermey and Anders Nykjaer and Petersen, {Claus M} and Christian Jacobsen and Andreasen, {Peter A}",
year = "2004",
language = "Deutsch",
volume = "381",
pages = "203--212",
journal = "BIOCHEM J",
issn = "0264-6021",
publisher = "PORTLAND PRESS LTD",
number = "1",

}

RIS

TY - JOUR

T1 - The mosaic receptor sorLA/LR11 binds components of the plasminogen-activating system and platelet-derived growth factor-BB similarly to LRP1 (low-density lipoprotein receptor-related protein), but mediates slow internalization of bound ligand.

AU - Gliemann, Jørgen

AU - Hermey, Guido

AU - Nykjaer, Anders

AU - Petersen, Claus M

AU - Jacobsen, Christian

AU - Andreasen, Peter A

PY - 2004

Y1 - 2004

N2 - The type-1 receptor sorLA/LR11, a member of the Vps10p-domain receptor family that also contains domains characterizing members of the LDL (low-density lipoprotein) receptor family, has been shown to induce increased uPAR (urokinase receptor) expression as well as enhanced migration and invasion activities in smooth muscle cells in the presence of PDGF-BB (platelet-derived growth factor-BB). Here we show that sorLA interacts with both components of the plasminogen activating system and PDGF-BB similarly to LRP1 (LDL receptor-related protein/alpha2-macroglobulin receptor), which is an important clearance receptor with established functions in controlling uPAR expression as well as PDGF-BB signalling. In contrast with LRP1, sorLA does not interact with alpha2-macroglobulin, which is a binding protein for several growth factors, including PDGF-BB. By using LRP1-deficient cells transfected with sorLA, we demonstrate that sorLA-bound ligand is internalized at a much lower rate than LRP1-bound ligand, and that sorLA is inefficient in regulating cell surface uPAR expression, which depends on rapid internalization of the ternary complex between urokinase-type plasminogen activator, its type-1 inhibitor, and uPAR. Thus, although overlapping with regard to binding profiles, sorLA is substantially less efficient as a clearance receptor than LRP1. We propose that sorLA can divert ligands away from LRP1 and thereby inhibit both their clearance and signalling events mediated by LRP1.

AB - The type-1 receptor sorLA/LR11, a member of the Vps10p-domain receptor family that also contains domains characterizing members of the LDL (low-density lipoprotein) receptor family, has been shown to induce increased uPAR (urokinase receptor) expression as well as enhanced migration and invasion activities in smooth muscle cells in the presence of PDGF-BB (platelet-derived growth factor-BB). Here we show that sorLA interacts with both components of the plasminogen activating system and PDGF-BB similarly to LRP1 (LDL receptor-related protein/alpha2-macroglobulin receptor), which is an important clearance receptor with established functions in controlling uPAR expression as well as PDGF-BB signalling. In contrast with LRP1, sorLA does not interact with alpha2-macroglobulin, which is a binding protein for several growth factors, including PDGF-BB. By using LRP1-deficient cells transfected with sorLA, we demonstrate that sorLA-bound ligand is internalized at a much lower rate than LRP1-bound ligand, and that sorLA is inefficient in regulating cell surface uPAR expression, which depends on rapid internalization of the ternary complex between urokinase-type plasminogen activator, its type-1 inhibitor, and uPAR. Thus, although overlapping with regard to binding profiles, sorLA is substantially less efficient as a clearance receptor than LRP1. We propose that sorLA can divert ligands away from LRP1 and thereby inhibit both their clearance and signalling events mediated by LRP1.

M3 - SCORING: Zeitschriftenaufsatz

VL - 381

SP - 203

EP - 212

JO - BIOCHEM J

JF - BIOCHEM J

SN - 0264-6021

IS - 1

M1 - 1

ER -