Simultaneous Brg1 Knockout and MYCN Overexpression in Cerebellar Granule Neuron Precursors Is Insufficient to Drive Tumor Formation but Temporarily Enhances their Proliferation and Delays their Migration

Standard

Simultaneous Brg1 Knockout and MYCN Overexpression in Cerebellar Granule Neuron Precursors Is Insufficient to Drive Tumor Formation but Temporarily Enhances their Proliferation and Delays their Migration. / Holdhof, Dörthe; On, Ji Hoon; Schoof, Melanie; Göbel, Carolin; Schüller, Ulrich.

In: CEREBELLUM, Vol. 20, No. 3, 06.2021, p. 410-419.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{accb9f1e4dba446091c17e1c07d7d993,
title = "Simultaneous Brg1 Knockout and MYCN Overexpression in Cerebellar Granule Neuron Precursors Is Insufficient to Drive Tumor Formation but Temporarily Enhances their Proliferation and Delays their Migration",
abstract = "Medulloblastoma (MB) is the most common malignant brain tumor in childhood. According to the World Health Organization (WHO) classification of central nervous system (CNS) tumors, this embryonal tumor is divided into a wingless (WNT)-activated, Sonic hedgehog (SHH)-activated, and non-WNT/non-SHH entity. The latter is poorly defined but frequently carries mutations in Brahma-related gene 1 (BRG1) or amplifications of MYCN. Here, we investigated whether a combination of a Brg1 knockout and an overexpression of MYCN in cerebellar granule neuron precursors or multipotent neural stem cells is sufficient to drive brain tumor formation in mice. To this end, we generated Math1-creERT2::Brg1fl/fl::lslMYCN and hGFAP-cre::Brg1fl/fl::lslMYCN mice, respectively. We did not observe brain tumor formation in any of these models. hGFAP-cre::Brg1fl/fl::lslMYCN mice revealed severe CNS abnormalities with short survival, similar to the situation with a sole loss of Brg1, as we previously described. Investigation of Math1-creERT2::Brg1fl/fl::lslMYCN mice with a tamoxifen induction at postnatal day 3 revealed a regular survival but significant increase in cerebellar granule neuron precursor proliferation, followed by a delayed inward migration of these cells. This is in stark contrast to the hypoplastic cerebellum that we previously observed after embryonic deletion of Brg1 in Math1 positive cerebellar granule neurons. Our results indicate a time-specific function of Brg1 in cerebellar granule neuron precursors. Yet, the exact temporal and spatial origin of non-WNT/non-SHH MB remains unclear.",
author = "D{\"o}rthe Holdhof and On, {Ji Hoon} and Melanie Schoof and Carolin G{\"o}bel and Ulrich Sch{\"u}ller",
year = "2021",
month = jun,
doi = "10.1007/s12311-020-01219-2",
language = "English",
volume = "20",
pages = "410--419",
journal = "CEREBELLUM",
issn = "1473-4222",
publisher = "Springer New York",
number = "3",

}

RIS

TY - JOUR

T1 - Simultaneous Brg1 Knockout and MYCN Overexpression in Cerebellar Granule Neuron Precursors Is Insufficient to Drive Tumor Formation but Temporarily Enhances their Proliferation and Delays their Migration

AU - Holdhof, Dörthe

AU - On, Ji Hoon

AU - Schoof, Melanie

AU - Göbel, Carolin

AU - Schüller, Ulrich

PY - 2021/6

Y1 - 2021/6

N2 - Medulloblastoma (MB) is the most common malignant brain tumor in childhood. According to the World Health Organization (WHO) classification of central nervous system (CNS) tumors, this embryonal tumor is divided into a wingless (WNT)-activated, Sonic hedgehog (SHH)-activated, and non-WNT/non-SHH entity. The latter is poorly defined but frequently carries mutations in Brahma-related gene 1 (BRG1) or amplifications of MYCN. Here, we investigated whether a combination of a Brg1 knockout and an overexpression of MYCN in cerebellar granule neuron precursors or multipotent neural stem cells is sufficient to drive brain tumor formation in mice. To this end, we generated Math1-creERT2::Brg1fl/fl::lslMYCN and hGFAP-cre::Brg1fl/fl::lslMYCN mice, respectively. We did not observe brain tumor formation in any of these models. hGFAP-cre::Brg1fl/fl::lslMYCN mice revealed severe CNS abnormalities with short survival, similar to the situation with a sole loss of Brg1, as we previously described. Investigation of Math1-creERT2::Brg1fl/fl::lslMYCN mice with a tamoxifen induction at postnatal day 3 revealed a regular survival but significant increase in cerebellar granule neuron precursor proliferation, followed by a delayed inward migration of these cells. This is in stark contrast to the hypoplastic cerebellum that we previously observed after embryonic deletion of Brg1 in Math1 positive cerebellar granule neurons. Our results indicate a time-specific function of Brg1 in cerebellar granule neuron precursors. Yet, the exact temporal and spatial origin of non-WNT/non-SHH MB remains unclear.

AB - Medulloblastoma (MB) is the most common malignant brain tumor in childhood. According to the World Health Organization (WHO) classification of central nervous system (CNS) tumors, this embryonal tumor is divided into a wingless (WNT)-activated, Sonic hedgehog (SHH)-activated, and non-WNT/non-SHH entity. The latter is poorly defined but frequently carries mutations in Brahma-related gene 1 (BRG1) or amplifications of MYCN. Here, we investigated whether a combination of a Brg1 knockout and an overexpression of MYCN in cerebellar granule neuron precursors or multipotent neural stem cells is sufficient to drive brain tumor formation in mice. To this end, we generated Math1-creERT2::Brg1fl/fl::lslMYCN and hGFAP-cre::Brg1fl/fl::lslMYCN mice, respectively. We did not observe brain tumor formation in any of these models. hGFAP-cre::Brg1fl/fl::lslMYCN mice revealed severe CNS abnormalities with short survival, similar to the situation with a sole loss of Brg1, as we previously described. Investigation of Math1-creERT2::Brg1fl/fl::lslMYCN mice with a tamoxifen induction at postnatal day 3 revealed a regular survival but significant increase in cerebellar granule neuron precursor proliferation, followed by a delayed inward migration of these cells. This is in stark contrast to the hypoplastic cerebellum that we previously observed after embryonic deletion of Brg1 in Math1 positive cerebellar granule neurons. Our results indicate a time-specific function of Brg1 in cerebellar granule neuron precursors. Yet, the exact temporal and spatial origin of non-WNT/non-SHH MB remains unclear.

U2 - 10.1007/s12311-020-01219-2

DO - 10.1007/s12311-020-01219-2

M3 - SCORING: Journal article

C2 - 33387268

VL - 20

SP - 410

EP - 419

JO - CEREBELLUM

JF - CEREBELLUM

SN - 1473-4222

IS - 3

ER -