S-adenosylhomocysteine induces inflammation through NFkB: A possible role for EZH2 in endothelial cell activation

Standard

S-adenosylhomocysteine induces inflammation through NFkB: A possible role for EZH2 in endothelial cell activation. / Barroso, Madalena; Kao, Derrick; Blom, Henk J; Tavares de Almeida, Isabel; Castro, Rita; Loscalzo, Joseph; Handy, Diane E.

In: Biochim Biophys Acta, Vol. 1862, No. 1, 01.2016, p. 82-92.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{1903f1c9e73c4f7db84c305a5049f776,
title = "S-adenosylhomocysteine induces inflammation through NFkB: A possible role for EZH2 in endothelial cell activation",
abstract = "S-adenosylhomocysteine (SAH) can induce endothelial dysfunction and activation, contributing to atherogenesis; however, its role in the activation of the inflammatory mediator NFkB has not been explored. Our aim was to determine the role of NFkB in SAH-induced activation of endothelial cells. Furthermore, we examined whether SAH, as a potent inhibitor of S-adenosylmethionine-dependent methyltransferases, suppresses the function of EZH2 methyltransferase to contribute to SAH-induced endothelial cell activation. We found that excess SAH increases the expression of adhesion molecules and cytokines in human coronary artery endothelial cells. Importantly, this up-regulation was suppressed in cells expressing a dominant negative form of the NFkB inhibitor, IkB. Moreover, SAH accumulation triggers the activation of both the canonical and non-canonical NFkB pathways, decreases EZH2, and reduces histone 3 lysine 27 trimethylation. EZH2 knockdown recapitulated the effects of excess SAH on endothelial activation, i.e., it induced NFkB activation and the subsequent up-regulation of adhesion molecules and cytokines. Our findings suggest that suppression of the epigenetic regulator EZH2 by excess SAH may contribute to NFkB activation and the consequent vascular inflammatory response. These studies unveil new targets of SAH regulation, demonstrating that EZH2 suppression and NFkB activation mediated by SAH accumulation may contribute to its adverse effects in the vasculature.",
keywords = "Journal Article",
author = "Madalena Barroso and Derrick Kao and Blom, {Henk J} and {Tavares de Almeida}, Isabel and Rita Castro and Joseph Loscalzo and Handy, {Diane E}",
note = "Copyright {\textcopyright} 2015 Elsevier B.V. All rights reserved.",
year = "2016",
month = jan,
doi = "10.1016/j.bbadis.2015.10.019",
language = "English",
volume = "1862",
pages = "82--92",
journal = "Biochim Biophys Acta",
issn = "0006-3002",
number = "1",

}

RIS

TY - JOUR

T1 - S-adenosylhomocysteine induces inflammation through NFkB: A possible role for EZH2 in endothelial cell activation

AU - Barroso, Madalena

AU - Kao, Derrick

AU - Blom, Henk J

AU - Tavares de Almeida, Isabel

AU - Castro, Rita

AU - Loscalzo, Joseph

AU - Handy, Diane E

N1 - Copyright © 2015 Elsevier B.V. All rights reserved.

PY - 2016/1

Y1 - 2016/1

N2 - S-adenosylhomocysteine (SAH) can induce endothelial dysfunction and activation, contributing to atherogenesis; however, its role in the activation of the inflammatory mediator NFkB has not been explored. Our aim was to determine the role of NFkB in SAH-induced activation of endothelial cells. Furthermore, we examined whether SAH, as a potent inhibitor of S-adenosylmethionine-dependent methyltransferases, suppresses the function of EZH2 methyltransferase to contribute to SAH-induced endothelial cell activation. We found that excess SAH increases the expression of adhesion molecules and cytokines in human coronary artery endothelial cells. Importantly, this up-regulation was suppressed in cells expressing a dominant negative form of the NFkB inhibitor, IkB. Moreover, SAH accumulation triggers the activation of both the canonical and non-canonical NFkB pathways, decreases EZH2, and reduces histone 3 lysine 27 trimethylation. EZH2 knockdown recapitulated the effects of excess SAH on endothelial activation, i.e., it induced NFkB activation and the subsequent up-regulation of adhesion molecules and cytokines. Our findings suggest that suppression of the epigenetic regulator EZH2 by excess SAH may contribute to NFkB activation and the consequent vascular inflammatory response. These studies unveil new targets of SAH regulation, demonstrating that EZH2 suppression and NFkB activation mediated by SAH accumulation may contribute to its adverse effects in the vasculature.

AB - S-adenosylhomocysteine (SAH) can induce endothelial dysfunction and activation, contributing to atherogenesis; however, its role in the activation of the inflammatory mediator NFkB has not been explored. Our aim was to determine the role of NFkB in SAH-induced activation of endothelial cells. Furthermore, we examined whether SAH, as a potent inhibitor of S-adenosylmethionine-dependent methyltransferases, suppresses the function of EZH2 methyltransferase to contribute to SAH-induced endothelial cell activation. We found that excess SAH increases the expression of adhesion molecules and cytokines in human coronary artery endothelial cells. Importantly, this up-regulation was suppressed in cells expressing a dominant negative form of the NFkB inhibitor, IkB. Moreover, SAH accumulation triggers the activation of both the canonical and non-canonical NFkB pathways, decreases EZH2, and reduces histone 3 lysine 27 trimethylation. EZH2 knockdown recapitulated the effects of excess SAH on endothelial activation, i.e., it induced NFkB activation and the subsequent up-regulation of adhesion molecules and cytokines. Our findings suggest that suppression of the epigenetic regulator EZH2 by excess SAH may contribute to NFkB activation and the consequent vascular inflammatory response. These studies unveil new targets of SAH regulation, demonstrating that EZH2 suppression and NFkB activation mediated by SAH accumulation may contribute to its adverse effects in the vasculature.

KW - Journal Article

U2 - 10.1016/j.bbadis.2015.10.019

DO - 10.1016/j.bbadis.2015.10.019

M3 - SCORING: Journal article

C2 - 26506125

VL - 1862

SP - 82

EP - 92

JO - Biochim Biophys Acta

JF - Biochim Biophys Acta

SN - 0006-3002

IS - 1

ER -