Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kappaB p65 signaling.

Standard

Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kappaB p65 signaling. / Meyer-Schwesinger, Catherine; Silke, Dehde; von Ruffer, Claudia; Gatzemeier, Stefan; Klug, Philipp; Wenzel, Ulrich; Stahl, Rolf A.K.; Thaiss, Friedrich; Meyer, Tobias.

In: AM J PHYSIOL-RENAL, Vol. 296, No. 5, 5, 2009, p. 1088-1099.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{d638eba62e584b1c9c375897b6d88cf5,
title = "Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kappaB p65 signaling.",
abstract = "Rho kinase signaling regulates inflammatory cell migration and chemokine production. We therefore investigated the mechanisms of Rho-kinase-dependent inflammation in lipopolysaccharide (LPS)-induced renal failure. C57/BL6 mice received intraperitoneal LPS with or without daily treatment with specific Rho kinase inhibitors (Y-27632 or HA-1077; 5 mg/kg). Rho kinase inhibitors were applied in a preventive (12 or 1 h before LPS) or a therapeutic (6 h after LPS) scheme. Both protected renal function and decreased tubular injury in LPS-treated mice. Enhanced Rho kinase activity was inhibited by HA-1077 in capillary endothelial cells, inflammatory cells, and tubuli by analysis of Rho kinase substrate phosphorylation. Early neutrophil influx was reduced by HA-1077 without reduction of the proinflammatory cytokine TNFalpha. In contrast, HA-1077 decreased the influx of monocytes/macrophages coinciding with reduced expression of the NF-kappaB-regulated chemokines CCL5 and CCL2. We therefore examined NF-kappaB signal transduction and found that NF-kappaB p65 phosphorylation and nuclear translocation were reduced by Rho kinase inhibition. IkappaBalpha degradation was not altered during the first 6 h but was reduced by HA-1077 at later time points. NF-kappaB p50-deficient mice were similarly protected from renal injury by Rho kinase inhibition further supporting the prominent role for p65 in Rho kinase inhibition. Together, these data suggest that Rho kinase inhibition by preventive or therapeutic treatment effectively reduced endotoxic kidney injury in part by attenuation of NF-kappaB p65 activation.",
author = "Catherine Meyer-Schwesinger and Dehde Silke and {von Ruffer}, Claudia and Stefan Gatzemeier and Philipp Klug and Ulrich Wenzel and Stahl, {Rolf A.K.} and Friedrich Thaiss and Tobias Meyer",
year = "2009",
language = "Deutsch",
volume = "296",
pages = "1088--1099",
journal = "AM J PHYSIOL-RENAL",
issn = "1931-857X",
publisher = "AMER PHYSIOLOGICAL SOC",
number = "5",

}

RIS

TY - JOUR

T1 - Rho kinase inhibition attenuates LPS-induced renal failure in mice in part by attenuation of NF-kappaB p65 signaling.

AU - Meyer-Schwesinger, Catherine

AU - Silke, Dehde

AU - von Ruffer, Claudia

AU - Gatzemeier, Stefan

AU - Klug, Philipp

AU - Wenzel, Ulrich

AU - Stahl, Rolf A.K.

AU - Thaiss, Friedrich

AU - Meyer, Tobias

PY - 2009

Y1 - 2009

N2 - Rho kinase signaling regulates inflammatory cell migration and chemokine production. We therefore investigated the mechanisms of Rho-kinase-dependent inflammation in lipopolysaccharide (LPS)-induced renal failure. C57/BL6 mice received intraperitoneal LPS with or without daily treatment with specific Rho kinase inhibitors (Y-27632 or HA-1077; 5 mg/kg). Rho kinase inhibitors were applied in a preventive (12 or 1 h before LPS) or a therapeutic (6 h after LPS) scheme. Both protected renal function and decreased tubular injury in LPS-treated mice. Enhanced Rho kinase activity was inhibited by HA-1077 in capillary endothelial cells, inflammatory cells, and tubuli by analysis of Rho kinase substrate phosphorylation. Early neutrophil influx was reduced by HA-1077 without reduction of the proinflammatory cytokine TNFalpha. In contrast, HA-1077 decreased the influx of monocytes/macrophages coinciding with reduced expression of the NF-kappaB-regulated chemokines CCL5 and CCL2. We therefore examined NF-kappaB signal transduction and found that NF-kappaB p65 phosphorylation and nuclear translocation were reduced by Rho kinase inhibition. IkappaBalpha degradation was not altered during the first 6 h but was reduced by HA-1077 at later time points. NF-kappaB p50-deficient mice were similarly protected from renal injury by Rho kinase inhibition further supporting the prominent role for p65 in Rho kinase inhibition. Together, these data suggest that Rho kinase inhibition by preventive or therapeutic treatment effectively reduced endotoxic kidney injury in part by attenuation of NF-kappaB p65 activation.

AB - Rho kinase signaling regulates inflammatory cell migration and chemokine production. We therefore investigated the mechanisms of Rho-kinase-dependent inflammation in lipopolysaccharide (LPS)-induced renal failure. C57/BL6 mice received intraperitoneal LPS with or without daily treatment with specific Rho kinase inhibitors (Y-27632 or HA-1077; 5 mg/kg). Rho kinase inhibitors were applied in a preventive (12 or 1 h before LPS) or a therapeutic (6 h after LPS) scheme. Both protected renal function and decreased tubular injury in LPS-treated mice. Enhanced Rho kinase activity was inhibited by HA-1077 in capillary endothelial cells, inflammatory cells, and tubuli by analysis of Rho kinase substrate phosphorylation. Early neutrophil influx was reduced by HA-1077 without reduction of the proinflammatory cytokine TNFalpha. In contrast, HA-1077 decreased the influx of monocytes/macrophages coinciding with reduced expression of the NF-kappaB-regulated chemokines CCL5 and CCL2. We therefore examined NF-kappaB signal transduction and found that NF-kappaB p65 phosphorylation and nuclear translocation were reduced by Rho kinase inhibition. IkappaBalpha degradation was not altered during the first 6 h but was reduced by HA-1077 at later time points. NF-kappaB p50-deficient mice were similarly protected from renal injury by Rho kinase inhibition further supporting the prominent role for p65 in Rho kinase inhibition. Together, these data suggest that Rho kinase inhibition by preventive or therapeutic treatment effectively reduced endotoxic kidney injury in part by attenuation of NF-kappaB p65 activation.

M3 - SCORING: Zeitschriftenaufsatz

VL - 296

SP - 1088

EP - 1099

JO - AM J PHYSIOL-RENAL

JF - AM J PHYSIOL-RENAL

SN - 1931-857X

IS - 5

M1 - 5

ER -