Reliability of transcardiopulmonary thermodilution cardiac output measurement in experimental aortic valve insufficiency

Standard

Reliability of transcardiopulmonary thermodilution cardiac output measurement in experimental aortic valve insufficiency. / Petzoldt, Martin; Trepte, Constantin J; Ridder, Jan; Maisch, Stefan; Klapsing, Philipp; Kersten, Jan F; Richter, Hans Peter; Kubitz, Jens C; Reuter, Daniel A; Goepfert, Matthias S.

In: PLOS ONE, Vol. 12, No. 10, 19.10.2017, p. e0186481.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{8d2fd76a58c249ea8c73141520d49170,
title = "Reliability of transcardiopulmonary thermodilution cardiac output measurement in experimental aortic valve insufficiency",
abstract = "BACKGROUND: Monitoring cardiac output (CO) is important to optimize hemodynamic function in critically ill patients. The prevalence of aortic valve insufficiency (AI) is rising in the aging population. However, reliability of CO monitoring techniques in AI is unknown. The aim of this study was to investigate the impact of AI on accuracy, precision, and trending ability of transcardiopulmonary thermodilution-derived COTCPTD in comparison with pulmonary artery catheter thermodilution COPAC.METHODS: Sixteen anesthetized domestic pigs were subjected to serial simultaneous measurements of COPAC and COTCPTD. In a novel experimental model, AI was induced by retraction of an expanded Dormia basket in the aortic valve annulus. The Dormia basket was delivered via a Judkins catheter guided by substernal epicardial echocardiography. High (HPC), moderate (MPC) and low cardiac preload conditions (LPC) were induced by fluid unloading (20 ml kg-1 blood withdrawal) and loading (subsequent retransfusion of the shed blood and additional infusion of 20 ml kg-1 hydroxyethyl starch). Within each preload condition CO was measured before and after the onset of AI. For statistical analysis, we used a mixed model analysis of variance, Bland-Altman analysis, the percentage error and concordance analysis.RESULTS: Experimental AI had a mean regurgitant volume of 33.6 ± 12.0 ml and regurgitant fraction of 42.9 ± 12.6%. The percentage error between COTCPTD and COPAC during competent valve function and after induction of substantial AI was: HPC 17.7% vs. 20.0%, MPC 20.5% vs. 26.1%, LPC 26.5% vs. 28.1% (pooled data: 22.5% vs. 24.1%). The ability to trend CO-changes induced by fluid loading and unloading did not differ between baseline and AI (concordance rate 95.8% during both conditions).CONCLUSION: Despite substantial AI, transcardiopulmonary thermodilution reliably measured CO under various cardiac preload conditions with a good ability to trend CO changes in a porcine model. COTCPTD and COPAC were interchangeable in substantial AI.",
keywords = "Journal Article",
author = "Martin Petzoldt and Trepte, {Constantin J} and Jan Ridder and Stefan Maisch and Philipp Klapsing and Kersten, {Jan F} and Richter, {Hans Peter} and Kubitz, {Jens C} and Reuter, {Daniel A} and Goepfert, {Matthias S}",
year = "2017",
month = oct,
day = "19",
doi = "10.1371/journal.pone.0186481",
language = "English",
volume = "12",
pages = "e0186481",
journal = "PLOS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

RIS

TY - JOUR

T1 - Reliability of transcardiopulmonary thermodilution cardiac output measurement in experimental aortic valve insufficiency

AU - Petzoldt, Martin

AU - Trepte, Constantin J

AU - Ridder, Jan

AU - Maisch, Stefan

AU - Klapsing, Philipp

AU - Kersten, Jan F

AU - Richter, Hans Peter

AU - Kubitz, Jens C

AU - Reuter, Daniel A

AU - Goepfert, Matthias S

PY - 2017/10/19

Y1 - 2017/10/19

N2 - BACKGROUND: Monitoring cardiac output (CO) is important to optimize hemodynamic function in critically ill patients. The prevalence of aortic valve insufficiency (AI) is rising in the aging population. However, reliability of CO monitoring techniques in AI is unknown. The aim of this study was to investigate the impact of AI on accuracy, precision, and trending ability of transcardiopulmonary thermodilution-derived COTCPTD in comparison with pulmonary artery catheter thermodilution COPAC.METHODS: Sixteen anesthetized domestic pigs were subjected to serial simultaneous measurements of COPAC and COTCPTD. In a novel experimental model, AI was induced by retraction of an expanded Dormia basket in the aortic valve annulus. The Dormia basket was delivered via a Judkins catheter guided by substernal epicardial echocardiography. High (HPC), moderate (MPC) and low cardiac preload conditions (LPC) were induced by fluid unloading (20 ml kg-1 blood withdrawal) and loading (subsequent retransfusion of the shed blood and additional infusion of 20 ml kg-1 hydroxyethyl starch). Within each preload condition CO was measured before and after the onset of AI. For statistical analysis, we used a mixed model analysis of variance, Bland-Altman analysis, the percentage error and concordance analysis.RESULTS: Experimental AI had a mean regurgitant volume of 33.6 ± 12.0 ml and regurgitant fraction of 42.9 ± 12.6%. The percentage error between COTCPTD and COPAC during competent valve function and after induction of substantial AI was: HPC 17.7% vs. 20.0%, MPC 20.5% vs. 26.1%, LPC 26.5% vs. 28.1% (pooled data: 22.5% vs. 24.1%). The ability to trend CO-changes induced by fluid loading and unloading did not differ between baseline and AI (concordance rate 95.8% during both conditions).CONCLUSION: Despite substantial AI, transcardiopulmonary thermodilution reliably measured CO under various cardiac preload conditions with a good ability to trend CO changes in a porcine model. COTCPTD and COPAC were interchangeable in substantial AI.

AB - BACKGROUND: Monitoring cardiac output (CO) is important to optimize hemodynamic function in critically ill patients. The prevalence of aortic valve insufficiency (AI) is rising in the aging population. However, reliability of CO monitoring techniques in AI is unknown. The aim of this study was to investigate the impact of AI on accuracy, precision, and trending ability of transcardiopulmonary thermodilution-derived COTCPTD in comparison with pulmonary artery catheter thermodilution COPAC.METHODS: Sixteen anesthetized domestic pigs were subjected to serial simultaneous measurements of COPAC and COTCPTD. In a novel experimental model, AI was induced by retraction of an expanded Dormia basket in the aortic valve annulus. The Dormia basket was delivered via a Judkins catheter guided by substernal epicardial echocardiography. High (HPC), moderate (MPC) and low cardiac preload conditions (LPC) were induced by fluid unloading (20 ml kg-1 blood withdrawal) and loading (subsequent retransfusion of the shed blood and additional infusion of 20 ml kg-1 hydroxyethyl starch). Within each preload condition CO was measured before and after the onset of AI. For statistical analysis, we used a mixed model analysis of variance, Bland-Altman analysis, the percentage error and concordance analysis.RESULTS: Experimental AI had a mean regurgitant volume of 33.6 ± 12.0 ml and regurgitant fraction of 42.9 ± 12.6%. The percentage error between COTCPTD and COPAC during competent valve function and after induction of substantial AI was: HPC 17.7% vs. 20.0%, MPC 20.5% vs. 26.1%, LPC 26.5% vs. 28.1% (pooled data: 22.5% vs. 24.1%). The ability to trend CO-changes induced by fluid loading and unloading did not differ between baseline and AI (concordance rate 95.8% during both conditions).CONCLUSION: Despite substantial AI, transcardiopulmonary thermodilution reliably measured CO under various cardiac preload conditions with a good ability to trend CO changes in a porcine model. COTCPTD and COPAC were interchangeable in substantial AI.

KW - Journal Article

U2 - 10.1371/journal.pone.0186481

DO - 10.1371/journal.pone.0186481

M3 - SCORING: Journal article

C2 - 29049339

VL - 12

SP - e0186481

JO - PLOS ONE

JF - PLOS ONE

SN - 1932-6203

IS - 10

ER -