Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol

Standard

Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. / Klink, Thorsten; Obmann, Verena; Heverhagen, Johannes; Stork, Alexander; Adam, Gerhard; Begemann, Philipp.

In: EUR J RADIOL, Vol. 83, No. 9, 01.09.2014, p. 1645-1654.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{16dd2bef57d34830a188c054aaacd0b9,
title = "Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol",
abstract = "OBJECTIVES: In this phantom CT study, we investigated whether images reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) with reduced tube voltage and current have equivalent quality. We evaluated the effects of different acquisition and reconstruction parameter settings on image quality and radiation doses. Additionally, patient CT studies were evaluated to confirm our phantom results.METHODS: Helical and axial 256 multi-slice computed tomography scans of the phantom (Catphan({\textregistered})) were performed with varying tube voltages (80-140kV) and currents (30-200mAs). 198 phantom data sets were reconstructed applying FBP and IR with increasing iterations, and soft and sharp kernels. Further, 25 chest and abdomen CT scans, performed with high and low exposure per patient, were reconstructed with IR and FBP. Two independent observers evaluated image quality and radiation doses of both phantom and patient scans.RESULTS: In phantom scans, noise reduction was significantly improved using IR with increasing iterations, independent from tissue, scan-mode, tube-voltage, current, and kernel. IR did not affect high-contrast resolution. Low-contrast resolution was also not negatively affected, but improved in scans with doses <5mGy, although object detectability generally decreased with the lowering of exposure. At comparable image quality levels, CTDIvol was reduced by 26-50% using IR. In patients, applying IR vs. FBP resulted in good to excellent image quality, while tube voltage and current settings could be significantly decreased.CONCLUSIONS: Our phantom experiments demonstrate that image quality levels of FBP reconstructions can also be achieved at lower tube voltages and tube currents when applying IR. Our findings could be confirmed in patients revealing the potential of IR to significantly reduce CT radiation doses.",
author = "Thorsten Klink and Verena Obmann and Johannes Heverhagen and Alexander Stork and Gerhard Adam and Philipp Begemann",
note = "Copyright {\textcopyright} 2014 Elsevier Ireland Ltd. All rights reserved.",
year = "2014",
month = sep,
day = "1",
doi = "10.1016/j.ejrad.2014.05.033",
language = "English",
volume = "83",
pages = "1645--1654",
journal = "EUR J RADIOL",
issn = "0720-048X",
publisher = "Elsevier",
number = "9",

}

RIS

TY - JOUR

T1 - Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol

AU - Klink, Thorsten

AU - Obmann, Verena

AU - Heverhagen, Johannes

AU - Stork, Alexander

AU - Adam, Gerhard

AU - Begemann, Philipp

N1 - Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

PY - 2014/9/1

Y1 - 2014/9/1

N2 - OBJECTIVES: In this phantom CT study, we investigated whether images reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) with reduced tube voltage and current have equivalent quality. We evaluated the effects of different acquisition and reconstruction parameter settings on image quality and radiation doses. Additionally, patient CT studies were evaluated to confirm our phantom results.METHODS: Helical and axial 256 multi-slice computed tomography scans of the phantom (Catphan(®)) were performed with varying tube voltages (80-140kV) and currents (30-200mAs). 198 phantom data sets were reconstructed applying FBP and IR with increasing iterations, and soft and sharp kernels. Further, 25 chest and abdomen CT scans, performed with high and low exposure per patient, were reconstructed with IR and FBP. Two independent observers evaluated image quality and radiation doses of both phantom and patient scans.RESULTS: In phantom scans, noise reduction was significantly improved using IR with increasing iterations, independent from tissue, scan-mode, tube-voltage, current, and kernel. IR did not affect high-contrast resolution. Low-contrast resolution was also not negatively affected, but improved in scans with doses <5mGy, although object detectability generally decreased with the lowering of exposure. At comparable image quality levels, CTDIvol was reduced by 26-50% using IR. In patients, applying IR vs. FBP resulted in good to excellent image quality, while tube voltage and current settings could be significantly decreased.CONCLUSIONS: Our phantom experiments demonstrate that image quality levels of FBP reconstructions can also be achieved at lower tube voltages and tube currents when applying IR. Our findings could be confirmed in patients revealing the potential of IR to significantly reduce CT radiation doses.

AB - OBJECTIVES: In this phantom CT study, we investigated whether images reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) with reduced tube voltage and current have equivalent quality. We evaluated the effects of different acquisition and reconstruction parameter settings on image quality and radiation doses. Additionally, patient CT studies were evaluated to confirm our phantom results.METHODS: Helical and axial 256 multi-slice computed tomography scans of the phantom (Catphan(®)) were performed with varying tube voltages (80-140kV) and currents (30-200mAs). 198 phantom data sets were reconstructed applying FBP and IR with increasing iterations, and soft and sharp kernels. Further, 25 chest and abdomen CT scans, performed with high and low exposure per patient, were reconstructed with IR and FBP. Two independent observers evaluated image quality and radiation doses of both phantom and patient scans.RESULTS: In phantom scans, noise reduction was significantly improved using IR with increasing iterations, independent from tissue, scan-mode, tube-voltage, current, and kernel. IR did not affect high-contrast resolution. Low-contrast resolution was also not negatively affected, but improved in scans with doses <5mGy, although object detectability generally decreased with the lowering of exposure. At comparable image quality levels, CTDIvol was reduced by 26-50% using IR. In patients, applying IR vs. FBP resulted in good to excellent image quality, while tube voltage and current settings could be significantly decreased.CONCLUSIONS: Our phantom experiments demonstrate that image quality levels of FBP reconstructions can also be achieved at lower tube voltages and tube currents when applying IR. Our findings could be confirmed in patients revealing the potential of IR to significantly reduce CT radiation doses.

U2 - 10.1016/j.ejrad.2014.05.033

DO - 10.1016/j.ejrad.2014.05.033

M3 - SCORING: Journal article

C2 - 25037931

VL - 83

SP - 1645

EP - 1654

JO - EUR J RADIOL

JF - EUR J RADIOL

SN - 0720-048X

IS - 9

ER -