Rapid isotropic diffusion mapping without susceptibility artifacts: whole brain studies using diffusion-weighted single-shot STEAM MR imaging.

Standard

Rapid isotropic diffusion mapping without susceptibility artifacts: whole brain studies using diffusion-weighted single-shot STEAM MR imaging. / Nolte, U G; Finsterbusch, Jürgen; Frahm, J.

In: MAGN RESON MED, Vol. 44, No. 5, 5, 2000, p. 731-736.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{5b7a194f321e4a8b9e1162011c2d5a0d,
title = "Rapid isotropic diffusion mapping without susceptibility artifacts: whole brain studies using diffusion-weighted single-shot STEAM MR imaging.",
abstract = "A subsecond magnetic resonance imaging (MRI) technique for isotropic diffusion mapping is described which, in contrast to echo-planar imaging (EPI), is insensitive to resonance offsets, i.e., tissue susceptibility differences, magnetic field inhomogeneities, and chemical shifts. It combines a diffusion-weighted (DW) spin-echo preparation period and a high-speed stimulated echo acquisition mode (STEAM) MRI sequence and yields single-shot images within measuring times of 559 msec (80 echoes). Here, diffusion encoding involved one scan without DW, three DW scans with b = 490 sec mm(-2), and three DW scans with b = 1000 sec mm(-2) (orthogonal gradient orientations). An automated on-line evaluation resulted in isotropic DW images as well as ADC maps (trace of the diffusion tensor). Experiments at 2.0 T covered the brain of healthy subjects in 20 contiguous sections of 6 mm thickness and 2.0 x 2.0 mm(2) in-plane resolution within a total measuring time of 78 sec. High-resolution studies at 1.0 x 1.0 mm(2) (interpolated from 2.0 x 1.0 mm(2) acquisitions) were obtained within 5 min 13 sec using four averages. In comparison with EPI, DW single-shot STEAM MRI exhibits only about half the SNR, but completely avoids regional signal losses, high intensity artifacts, and geometric distortions.",
author = "Nolte, {U G} and J{\"u}rgen Finsterbusch and J Frahm",
year = "2000",
language = "Deutsch",
volume = "44",
pages = "731--736",
journal = "MAGN RESON MED",
issn = "0740-3194",
publisher = "John Wiley and Sons Inc.",
number = "5",

}

RIS

TY - JOUR

T1 - Rapid isotropic diffusion mapping without susceptibility artifacts: whole brain studies using diffusion-weighted single-shot STEAM MR imaging.

AU - Nolte, U G

AU - Finsterbusch, Jürgen

AU - Frahm, J

PY - 2000

Y1 - 2000

N2 - A subsecond magnetic resonance imaging (MRI) technique for isotropic diffusion mapping is described which, in contrast to echo-planar imaging (EPI), is insensitive to resonance offsets, i.e., tissue susceptibility differences, magnetic field inhomogeneities, and chemical shifts. It combines a diffusion-weighted (DW) spin-echo preparation period and a high-speed stimulated echo acquisition mode (STEAM) MRI sequence and yields single-shot images within measuring times of 559 msec (80 echoes). Here, diffusion encoding involved one scan without DW, three DW scans with b = 490 sec mm(-2), and three DW scans with b = 1000 sec mm(-2) (orthogonal gradient orientations). An automated on-line evaluation resulted in isotropic DW images as well as ADC maps (trace of the diffusion tensor). Experiments at 2.0 T covered the brain of healthy subjects in 20 contiguous sections of 6 mm thickness and 2.0 x 2.0 mm(2) in-plane resolution within a total measuring time of 78 sec. High-resolution studies at 1.0 x 1.0 mm(2) (interpolated from 2.0 x 1.0 mm(2) acquisitions) were obtained within 5 min 13 sec using four averages. In comparison with EPI, DW single-shot STEAM MRI exhibits only about half the SNR, but completely avoids regional signal losses, high intensity artifacts, and geometric distortions.

AB - A subsecond magnetic resonance imaging (MRI) technique for isotropic diffusion mapping is described which, in contrast to echo-planar imaging (EPI), is insensitive to resonance offsets, i.e., tissue susceptibility differences, magnetic field inhomogeneities, and chemical shifts. It combines a diffusion-weighted (DW) spin-echo preparation period and a high-speed stimulated echo acquisition mode (STEAM) MRI sequence and yields single-shot images within measuring times of 559 msec (80 echoes). Here, diffusion encoding involved one scan without DW, three DW scans with b = 490 sec mm(-2), and three DW scans with b = 1000 sec mm(-2) (orthogonal gradient orientations). An automated on-line evaluation resulted in isotropic DW images as well as ADC maps (trace of the diffusion tensor). Experiments at 2.0 T covered the brain of healthy subjects in 20 contiguous sections of 6 mm thickness and 2.0 x 2.0 mm(2) in-plane resolution within a total measuring time of 78 sec. High-resolution studies at 1.0 x 1.0 mm(2) (interpolated from 2.0 x 1.0 mm(2) acquisitions) were obtained within 5 min 13 sec using four averages. In comparison with EPI, DW single-shot STEAM MRI exhibits only about half the SNR, but completely avoids regional signal losses, high intensity artifacts, and geometric distortions.

M3 - SCORING: Zeitschriftenaufsatz

VL - 44

SP - 731

EP - 736

JO - MAGN RESON MED

JF - MAGN RESON MED

SN - 0740-3194

IS - 5

M1 - 5

ER -