Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography with conventional assessment by computed tomography scans and serum tumor markers for the evaluation of residual masses in patients with nonseminomatous germ cell carcinoma

Standard

Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography with conventional assessment by computed tomography scans and serum tumor markers for the evaluation of residual masses in patients with nonseminomatous germ cell carcinoma. / Kollmannsberger, Christian; Oechsle, Karin; Dohmen, Bernhard M; Pfannenberg, Anna; Bares, Roland; Claussen, Claus D; Kanz, Lothar; Bokemeyer, Carsten.

In: CANCER-AM CANCER SOC, Vol. 94, No. 9, 01.05.2002, p. 2353-62.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{e20f48a0c5eb4fc291c26a32445cda08,
title = "Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography with conventional assessment by computed tomography scans and serum tumor markers for the evaluation of residual masses in patients with nonseminomatous germ cell carcinoma",
abstract = "BACKGROUND: To assess the ability of [(18)F]fluorodeoxyglucose (F-18 FDG) positron emission tomography (PET) to predict the viability of residual masses after chemotherapy in patients with metastatic nonseminomatous germ cell tumors (GCT), PET results were compared in a blinded analysis with computed tomography (CT) scans and serum tumor marker changes (TUM) as established methods of assessment.METHODS: Independent reviewers who were blinded to each other's results evaluated the PET results and corresponding CT scan and TUM results in 85 residual lesions from 45 patients. All patients were treated within prospective clinical trials and received primary/salvage, high-dose chemotherapy with autologous blood stem cell support for primary poor prognosis disease or recurrent disease. PET results were assessed both visually and by quantifying glucose uptake (standardized uptake values). Results were validated either by histologic examination of a resected mass and/or biopsy (n = 28 lesions) or by a 6-month clinical follow-up after evaluation (n = 57 lesions).RESULTS: F-18 FDG PET showed increased tracer uptake in 32 of 85 residual lesions, with 29 true positive (TP) lesions and three false positive (FP) lesions. Fifty-three lesions were classified by PET as negative (no viable GCT), 33 lesions were classified by PET as true negative (TN), and 20 lesions were classified by PET as false negative (FN). In the blinded reading of the corresponding CT scan and TUM results, 38 residual lesions were assessed correctly as containing viable carcinoma and/or teratoma. Forty-six lesions were classified as non-suspicious by CT scan/TUM (33 TN lesions and 14 falsely classified lesions). PET correctly predicted the presence of viable carcinoma in 5 of these 14 and the absence of viable carcinoma in 3 of these 14 lesions. Resulting sensitivities and specificities for the prediction of residual mass viability were as follows: PET, 59% sensitivity and 92% specificity; radiologic monitoring, 55% sensitivity and 86% specificity; and TUM, 42% sensitivity and 100% specificity. The positive and negative predictive values for PET were 91% and 62%, respectively. The diagnostic efficacy of PET did not improve when patients with teratomatous elements in the primary tumor were excluded from the analysis. In patients with multiple residual masses, a uniformly increased residual F-18 FDG uptake in all lesions was a strong predictor for the presence of viable carcinoma.CONCLUSIONS: F-18 FDG PET imaging performed in conjunction with conventional staging methods offers additional information for the prediction of residual mass histology in patients with nonseminomatous GCT. A positive PET is highly predictive for the presence of viable carcinoma. Other useful indications for a PET examination include patients with multiple residual masses and patients with marker negative disease.",
keywords = "Adult, Fluorodeoxyglucose F18, Follow-Up Studies, Germinoma, Humans, Magnetic Resonance Imaging, Middle Aged, Neoplasm, Residual, Prognosis, Prospective Studies, Radiopharmaceuticals, Sensitivity and Specificity, Tomography, Emission-Computed, Tumor Markers, Biological",
author = "Christian Kollmannsberger and Karin Oechsle and Dohmen, {Bernhard M} and Anna Pfannenberg and Roland Bares and Claussen, {Claus D} and Lothar Kanz and Carsten Bokemeyer",
note = "Copyright 2002 American Cancer Society.DOI 10.1002/cncr.10494",
year = "2002",
month = may,
day = "1",
doi = "10.1002/cncr.10494",
language = "English",
volume = "94",
pages = "2353--62",
journal = "CANCER-AM CANCER SOC",
issn = "0008-543X",
publisher = "John Wiley and Sons Inc.",
number = "9",

}

RIS

TY - JOUR

T1 - Prospective comparison of [18F]fluorodeoxyglucose positron emission tomography with conventional assessment by computed tomography scans and serum tumor markers for the evaluation of residual masses in patients with nonseminomatous germ cell carcinoma

AU - Kollmannsberger, Christian

AU - Oechsle, Karin

AU - Dohmen, Bernhard M

AU - Pfannenberg, Anna

AU - Bares, Roland

AU - Claussen, Claus D

AU - Kanz, Lothar

AU - Bokemeyer, Carsten

N1 - Copyright 2002 American Cancer Society.DOI 10.1002/cncr.10494

PY - 2002/5/1

Y1 - 2002/5/1

N2 - BACKGROUND: To assess the ability of [(18)F]fluorodeoxyglucose (F-18 FDG) positron emission tomography (PET) to predict the viability of residual masses after chemotherapy in patients with metastatic nonseminomatous germ cell tumors (GCT), PET results were compared in a blinded analysis with computed tomography (CT) scans and serum tumor marker changes (TUM) as established methods of assessment.METHODS: Independent reviewers who were blinded to each other's results evaluated the PET results and corresponding CT scan and TUM results in 85 residual lesions from 45 patients. All patients were treated within prospective clinical trials and received primary/salvage, high-dose chemotherapy with autologous blood stem cell support for primary poor prognosis disease or recurrent disease. PET results were assessed both visually and by quantifying glucose uptake (standardized uptake values). Results were validated either by histologic examination of a resected mass and/or biopsy (n = 28 lesions) or by a 6-month clinical follow-up after evaluation (n = 57 lesions).RESULTS: F-18 FDG PET showed increased tracer uptake in 32 of 85 residual lesions, with 29 true positive (TP) lesions and three false positive (FP) lesions. Fifty-three lesions were classified by PET as negative (no viable GCT), 33 lesions were classified by PET as true negative (TN), and 20 lesions were classified by PET as false negative (FN). In the blinded reading of the corresponding CT scan and TUM results, 38 residual lesions were assessed correctly as containing viable carcinoma and/or teratoma. Forty-six lesions were classified as non-suspicious by CT scan/TUM (33 TN lesions and 14 falsely classified lesions). PET correctly predicted the presence of viable carcinoma in 5 of these 14 and the absence of viable carcinoma in 3 of these 14 lesions. Resulting sensitivities and specificities for the prediction of residual mass viability were as follows: PET, 59% sensitivity and 92% specificity; radiologic monitoring, 55% sensitivity and 86% specificity; and TUM, 42% sensitivity and 100% specificity. The positive and negative predictive values for PET were 91% and 62%, respectively. The diagnostic efficacy of PET did not improve when patients with teratomatous elements in the primary tumor were excluded from the analysis. In patients with multiple residual masses, a uniformly increased residual F-18 FDG uptake in all lesions was a strong predictor for the presence of viable carcinoma.CONCLUSIONS: F-18 FDG PET imaging performed in conjunction with conventional staging methods offers additional information for the prediction of residual mass histology in patients with nonseminomatous GCT. A positive PET is highly predictive for the presence of viable carcinoma. Other useful indications for a PET examination include patients with multiple residual masses and patients with marker negative disease.

AB - BACKGROUND: To assess the ability of [(18)F]fluorodeoxyglucose (F-18 FDG) positron emission tomography (PET) to predict the viability of residual masses after chemotherapy in patients with metastatic nonseminomatous germ cell tumors (GCT), PET results were compared in a blinded analysis with computed tomography (CT) scans and serum tumor marker changes (TUM) as established methods of assessment.METHODS: Independent reviewers who were blinded to each other's results evaluated the PET results and corresponding CT scan and TUM results in 85 residual lesions from 45 patients. All patients were treated within prospective clinical trials and received primary/salvage, high-dose chemotherapy with autologous blood stem cell support for primary poor prognosis disease or recurrent disease. PET results were assessed both visually and by quantifying glucose uptake (standardized uptake values). Results were validated either by histologic examination of a resected mass and/or biopsy (n = 28 lesions) or by a 6-month clinical follow-up after evaluation (n = 57 lesions).RESULTS: F-18 FDG PET showed increased tracer uptake in 32 of 85 residual lesions, with 29 true positive (TP) lesions and three false positive (FP) lesions. Fifty-three lesions were classified by PET as negative (no viable GCT), 33 lesions were classified by PET as true negative (TN), and 20 lesions were classified by PET as false negative (FN). In the blinded reading of the corresponding CT scan and TUM results, 38 residual lesions were assessed correctly as containing viable carcinoma and/or teratoma. Forty-six lesions were classified as non-suspicious by CT scan/TUM (33 TN lesions and 14 falsely classified lesions). PET correctly predicted the presence of viable carcinoma in 5 of these 14 and the absence of viable carcinoma in 3 of these 14 lesions. Resulting sensitivities and specificities for the prediction of residual mass viability were as follows: PET, 59% sensitivity and 92% specificity; radiologic monitoring, 55% sensitivity and 86% specificity; and TUM, 42% sensitivity and 100% specificity. The positive and negative predictive values for PET were 91% and 62%, respectively. The diagnostic efficacy of PET did not improve when patients with teratomatous elements in the primary tumor were excluded from the analysis. In patients with multiple residual masses, a uniformly increased residual F-18 FDG uptake in all lesions was a strong predictor for the presence of viable carcinoma.CONCLUSIONS: F-18 FDG PET imaging performed in conjunction with conventional staging methods offers additional information for the prediction of residual mass histology in patients with nonseminomatous GCT. A positive PET is highly predictive for the presence of viable carcinoma. Other useful indications for a PET examination include patients with multiple residual masses and patients with marker negative disease.

KW - Adult

KW - Fluorodeoxyglucose F18

KW - Follow-Up Studies

KW - Germinoma

KW - Humans

KW - Magnetic Resonance Imaging

KW - Middle Aged

KW - Neoplasm, Residual

KW - Prognosis

KW - Prospective Studies

KW - Radiopharmaceuticals

KW - Sensitivity and Specificity

KW - Tomography, Emission-Computed

KW - Tumor Markers, Biological

U2 - 10.1002/cncr.10494

DO - 10.1002/cncr.10494

M3 - SCORING: Journal article

C2 - 12015760

VL - 94

SP - 2353

EP - 2362

JO - CANCER-AM CANCER SOC

JF - CANCER-AM CANCER SOC

SN - 0008-543X

IS - 9

ER -