Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism.

Standard

Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism. / Schulze, Jochen; Albers, Joachim; Baranowsky, Anke; Keller, Johannes; Spiro, Alexander Simon; Streichert, Thomas; Zustin, Jozef; Amling, Michael; Schinke, Thorsten.

In: BONE, 2009.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{ebccf0a81926411e902127317f42c72a,
title = "Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism.",
abstract = "Prostate cancer primarily metastasizes to bone, and the interaction of cancer cells with bone cells results in a local activation of bone formation and/or bone resorption. Since the cellular and molecular mechanisms underlying the development of these tumor-induced osteoblastic or osteolytic lesions are still poorly understood, we have compared the effects of two prostate cancer cell lines, osteoblastic MDA-PCa-2b cells and osteolytic PC-3 cells, on bone-forming osteoblasts. Using Affymetrix Gene Chip hybridization followed by qRT-PCR confirmation we were able to identify specific genes, including Smpd3 and Dmp1, whose expression is significantly reduced upon treatment with PC-3-conditioned medium. Moreover, we observed that PC-3-conditioned medium led to a marked induction of several cytokine genes, including Cxcl5, Cxcl12 and Tnfsf11, the latter one encoding for the osteoclast differentiation factor Rankl. Likewise, when we analyzed the effects of MDA-PCa-2b- and PC-3-conditioned medium on signal transduction in osteoblasts we did not only observe opposite effects on the canonical Wnt signalling pathway, but also a specific induction of Erk and Stat phosphorylation by PC-3-conditioned medium. Most importantly, the induction of Cxcl5, Cxcl12 and Tnfsf11 in osteoblasts by PC-3-conditioned medium was abrogated by the Stat3/5 inhibitor piceatannol, whereas the selective blockade of Stat1 and Erk activation had no effect. Together with the finding, that activated Stat3 in osteoblasts was detectable in bone biopsies from patients with osteolytic metastases, our data suggest that the Stat3/5-dependent activation of cytokine expression in osteoblasts may have a significant impact on cancer cell migration and proliferation, but also on osteoclast activation.",
author = "Jochen Schulze and Joachim Albers and Anke Baranowsky and Johannes Keller and Spiro, {Alexander Simon} and Thomas Streichert and Jozef Zustin and Michael Amling and Thorsten Schinke",
year = "2009",
language = "Deutsch",
journal = "BONE",
issn = "8756-3282",
publisher = "Elsevier Inc.",

}

RIS

TY - JOUR

T1 - Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism.

AU - Schulze, Jochen

AU - Albers, Joachim

AU - Baranowsky, Anke

AU - Keller, Johannes

AU - Spiro, Alexander Simon

AU - Streichert, Thomas

AU - Zustin, Jozef

AU - Amling, Michael

AU - Schinke, Thorsten

PY - 2009

Y1 - 2009

N2 - Prostate cancer primarily metastasizes to bone, and the interaction of cancer cells with bone cells results in a local activation of bone formation and/or bone resorption. Since the cellular and molecular mechanisms underlying the development of these tumor-induced osteoblastic or osteolytic lesions are still poorly understood, we have compared the effects of two prostate cancer cell lines, osteoblastic MDA-PCa-2b cells and osteolytic PC-3 cells, on bone-forming osteoblasts. Using Affymetrix Gene Chip hybridization followed by qRT-PCR confirmation we were able to identify specific genes, including Smpd3 and Dmp1, whose expression is significantly reduced upon treatment with PC-3-conditioned medium. Moreover, we observed that PC-3-conditioned medium led to a marked induction of several cytokine genes, including Cxcl5, Cxcl12 and Tnfsf11, the latter one encoding for the osteoclast differentiation factor Rankl. Likewise, when we analyzed the effects of MDA-PCa-2b- and PC-3-conditioned medium on signal transduction in osteoblasts we did not only observe opposite effects on the canonical Wnt signalling pathway, but also a specific induction of Erk and Stat phosphorylation by PC-3-conditioned medium. Most importantly, the induction of Cxcl5, Cxcl12 and Tnfsf11 in osteoblasts by PC-3-conditioned medium was abrogated by the Stat3/5 inhibitor piceatannol, whereas the selective blockade of Stat1 and Erk activation had no effect. Together with the finding, that activated Stat3 in osteoblasts was detectable in bone biopsies from patients with osteolytic metastases, our data suggest that the Stat3/5-dependent activation of cytokine expression in osteoblasts may have a significant impact on cancer cell migration and proliferation, but also on osteoclast activation.

AB - Prostate cancer primarily metastasizes to bone, and the interaction of cancer cells with bone cells results in a local activation of bone formation and/or bone resorption. Since the cellular and molecular mechanisms underlying the development of these tumor-induced osteoblastic or osteolytic lesions are still poorly understood, we have compared the effects of two prostate cancer cell lines, osteoblastic MDA-PCa-2b cells and osteolytic PC-3 cells, on bone-forming osteoblasts. Using Affymetrix Gene Chip hybridization followed by qRT-PCR confirmation we were able to identify specific genes, including Smpd3 and Dmp1, whose expression is significantly reduced upon treatment with PC-3-conditioned medium. Moreover, we observed that PC-3-conditioned medium led to a marked induction of several cytokine genes, including Cxcl5, Cxcl12 and Tnfsf11, the latter one encoding for the osteoclast differentiation factor Rankl. Likewise, when we analyzed the effects of MDA-PCa-2b- and PC-3-conditioned medium on signal transduction in osteoblasts we did not only observe opposite effects on the canonical Wnt signalling pathway, but also a specific induction of Erk and Stat phosphorylation by PC-3-conditioned medium. Most importantly, the induction of Cxcl5, Cxcl12 and Tnfsf11 in osteoblasts by PC-3-conditioned medium was abrogated by the Stat3/5 inhibitor piceatannol, whereas the selective blockade of Stat1 and Erk activation had no effect. Together with the finding, that activated Stat3 in osteoblasts was detectable in bone biopsies from patients with osteolytic metastases, our data suggest that the Stat3/5-dependent activation of cytokine expression in osteoblasts may have a significant impact on cancer cell migration and proliferation, but also on osteoclast activation.

M3 - SCORING: Zeitschriftenaufsatz

JO - BONE

JF - BONE

SN - 8756-3282

ER -