Origin and characteristics of high Shannon entropy at the pivot of locally stable rotors: insights from computational simulation

Standard

Origin and characteristics of high Shannon entropy at the pivot of locally stable rotors: insights from computational simulation. / Ganesan, Anand N; Kuklik, Pawel; Gharaviri, Ali; Brooks, Anthony; Chapman, Darius; Lau, Dennis H; Roberts-Thomson, Kurt C; Sanders, Prashanthan.

In: PLOS ONE, Vol. 9, No. 11, 2014, p. e110662.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

Ganesan, AN, Kuklik, P, Gharaviri, A, Brooks, A, Chapman, D, Lau, DH, Roberts-Thomson, KC & Sanders, P 2014, 'Origin and characteristics of high Shannon entropy at the pivot of locally stable rotors: insights from computational simulation', PLOS ONE, vol. 9, no. 11, pp. e110662. https://doi.org/10.1371/journal.pone.0110662

APA

Ganesan, A. N., Kuklik, P., Gharaviri, A., Brooks, A., Chapman, D., Lau, D. H., Roberts-Thomson, K. C., & Sanders, P. (2014). Origin and characteristics of high Shannon entropy at the pivot of locally stable rotors: insights from computational simulation. PLOS ONE, 9(11), e110662. https://doi.org/10.1371/journal.pone.0110662

Vancouver

Bibtex

@article{0508cc865439402f8c9abda428350c88,
title = "Origin and characteristics of high Shannon entropy at the pivot of locally stable rotors: insights from computational simulation",
abstract = "BACKGROUND: Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar electrograms used in electrophysiology recording encode information on both direction and timing of approaching wavefronts.OBJECTIVE: To test the hypothesis that bipolar electrograms from the pivot of rotors have higher Shannon entropy (ShEn) than electrograms recorded at the periphery due to the spatial dynamics of spiral waves.METHODS AND RESULTS: We studied spiral wave propagation in 2-dimensional sheets constructed using a simple cell automaton (FitzHugh-Nagumo), atrial (Courtemanche-Ramirez-Nattel) and ventricular (Luo-Rudy) myocyte cell models and in a geometric model spiral wave. In each system, bipolar electrogram recordings were simulated, and Shannon entropy maps constructed as a measure of electrogram information content. ShEn was consistently highest in the pivoting region associated with the phase singularity of the spiral wave. This property was consistently preserved across; (i) variation of model system (ii) alterations in bipolar electrode spacing, (iii) alternative bipolar electrode orientation (iv) bipolar electrogram filtering and (v) in the presence of rotor meander. Directional activation plots demonstrated that the origin of high ShEn at the pivot was the directional diversity of wavefront propagation observed in this location.CONCLUSIONS: The pivot of the rotor is consistently associated with high Shannon entropy of bipolar electrograms despite differences in action potential model, bipolar electrode spacing, signal filtering and rotor meander. Maximum ShEn is co-located with the pivot for rotors observed in the bipolar electrogram recording mode, and may be an intrinsic property of spiral wave dynamic behaviour.",
keywords = "Algorithms, Computer Simulation, Models, Theoretical",
author = "Ganesan, {Anand N} and Pawel Kuklik and Ali Gharaviri and Anthony Brooks and Darius Chapman and Lau, {Dennis H} and Roberts-Thomson, {Kurt C} and Prashanthan Sanders",
year = "2014",
doi = "10.1371/journal.pone.0110662",
language = "English",
volume = "9",
pages = "e110662",
journal = "PLOS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "11",

}

RIS

TY - JOUR

T1 - Origin and characteristics of high Shannon entropy at the pivot of locally stable rotors: insights from computational simulation

AU - Ganesan, Anand N

AU - Kuklik, Pawel

AU - Gharaviri, Ali

AU - Brooks, Anthony

AU - Chapman, Darius

AU - Lau, Dennis H

AU - Roberts-Thomson, Kurt C

AU - Sanders, Prashanthan

PY - 2014

Y1 - 2014

N2 - BACKGROUND: Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar electrograms used in electrophysiology recording encode information on both direction and timing of approaching wavefronts.OBJECTIVE: To test the hypothesis that bipolar electrograms from the pivot of rotors have higher Shannon entropy (ShEn) than electrograms recorded at the periphery due to the spatial dynamics of spiral waves.METHODS AND RESULTS: We studied spiral wave propagation in 2-dimensional sheets constructed using a simple cell automaton (FitzHugh-Nagumo), atrial (Courtemanche-Ramirez-Nattel) and ventricular (Luo-Rudy) myocyte cell models and in a geometric model spiral wave. In each system, bipolar electrogram recordings were simulated, and Shannon entropy maps constructed as a measure of electrogram information content. ShEn was consistently highest in the pivoting region associated with the phase singularity of the spiral wave. This property was consistently preserved across; (i) variation of model system (ii) alterations in bipolar electrode spacing, (iii) alternative bipolar electrode orientation (iv) bipolar electrogram filtering and (v) in the presence of rotor meander. Directional activation plots demonstrated that the origin of high ShEn at the pivot was the directional diversity of wavefront propagation observed in this location.CONCLUSIONS: The pivot of the rotor is consistently associated with high Shannon entropy of bipolar electrograms despite differences in action potential model, bipolar electrode spacing, signal filtering and rotor meander. Maximum ShEn is co-located with the pivot for rotors observed in the bipolar electrogram recording mode, and may be an intrinsic property of spiral wave dynamic behaviour.

AB - BACKGROUND: Rotors are postulated to maintain cardiac fibrillation. Despite the importance of bipolar electrograms in clinical electrophysiology, few data exist on the properties of bipolar electrograms at rotor sites. The pivot of a spiral wave is characterized by relative uncertainty of wavefront propagation direction compared to the periphery. The bipolar electrograms used in electrophysiology recording encode information on both direction and timing of approaching wavefronts.OBJECTIVE: To test the hypothesis that bipolar electrograms from the pivot of rotors have higher Shannon entropy (ShEn) than electrograms recorded at the periphery due to the spatial dynamics of spiral waves.METHODS AND RESULTS: We studied spiral wave propagation in 2-dimensional sheets constructed using a simple cell automaton (FitzHugh-Nagumo), atrial (Courtemanche-Ramirez-Nattel) and ventricular (Luo-Rudy) myocyte cell models and in a geometric model spiral wave. In each system, bipolar electrogram recordings were simulated, and Shannon entropy maps constructed as a measure of electrogram information content. ShEn was consistently highest in the pivoting region associated with the phase singularity of the spiral wave. This property was consistently preserved across; (i) variation of model system (ii) alterations in bipolar electrode spacing, (iii) alternative bipolar electrode orientation (iv) bipolar electrogram filtering and (v) in the presence of rotor meander. Directional activation plots demonstrated that the origin of high ShEn at the pivot was the directional diversity of wavefront propagation observed in this location.CONCLUSIONS: The pivot of the rotor is consistently associated with high Shannon entropy of bipolar electrograms despite differences in action potential model, bipolar electrode spacing, signal filtering and rotor meander. Maximum ShEn is co-located with the pivot for rotors observed in the bipolar electrogram recording mode, and may be an intrinsic property of spiral wave dynamic behaviour.

KW - Algorithms

KW - Computer Simulation

KW - Models, Theoretical

U2 - 10.1371/journal.pone.0110662

DO - 10.1371/journal.pone.0110662

M3 - SCORING: Journal article

C2 - 25401331

VL - 9

SP - e110662

JO - PLOS ONE

JF - PLOS ONE

SN - 1932-6203

IS - 11

ER -