Optimization and validation of methods for mapping of the radiofrequency transmit field at 3T.

Standard

Optimization and validation of methods for mapping of the radiofrequency transmit field at 3T. / Lutti, Antoine; Hutton, Chloe; Finsterbusch, Jürgen; Helms, Gunther; Weiskopf, Nikolaus.

In: MAGN RESON MED, Vol. 64, No. 1, 1, 2010, p. 229-238.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{9ade415051744b0191908dac8a7a1222,
title = "Optimization and validation of methods for mapping of the radiofrequency transmit field at 3T.",
abstract = "MRI techniques such as quantitative imaging and parallel transmit require precise knowledge of the radio-frequency transmit field (B(1) (+)). Three published methods were optimized for robust B(1) (+) mapping at 3T in the human brain: three-dimensional (3D) actual flip angle imaging (AFI), 3D echo-planar imaging (EPI), and two-dimensional (2D) stimulated echo acquisition mode (STEAM). We performed a comprehensive comparison of the methods, focusing on artifacts, reproducibility, and accuracy compared to a reference 2D double angle method. For the 3D AFI method, the addition of flow-compensated gradients for diffusion damping reduced the level of physiological artifacts and improved spoiling of transverse coherences. Correction of susceptibility-induced artifacts alleviated image distortions and improved the accuracy of the 3D EPI imaging method. For the 2D STEAM method, averaging over multiple acquisitions reduced the impact of physiological noise and a new calibration method enhanced the accuracy of the B(1) (+) maps. After optimization, all methods yielded low noise B(1) (+) maps (below 2 percentage units), of the nominal flip angle value (p.u.) with a systematic bias less than 5 p.u. units. Full brain coverage was obtained in less than 5 min. The 3D AFI method required minimal postprocessing and showed little sensitivity to off-resonance and physiological effects. The 3D EPI method showed the highest level of reproducibility. The 2D STEAM method was the most time-efficient technique.",
author = "Antoine Lutti and Chloe Hutton and J{\"u}rgen Finsterbusch and Gunther Helms and Nikolaus Weiskopf",
year = "2010",
language = "Deutsch",
volume = "64",
pages = "229--238",
journal = "MAGN RESON MED",
issn = "0740-3194",
publisher = "John Wiley and Sons Inc.",
number = "1",

}

RIS

TY - JOUR

T1 - Optimization and validation of methods for mapping of the radiofrequency transmit field at 3T.

AU - Lutti, Antoine

AU - Hutton, Chloe

AU - Finsterbusch, Jürgen

AU - Helms, Gunther

AU - Weiskopf, Nikolaus

PY - 2010

Y1 - 2010

N2 - MRI techniques such as quantitative imaging and parallel transmit require precise knowledge of the radio-frequency transmit field (B(1) (+)). Three published methods were optimized for robust B(1) (+) mapping at 3T in the human brain: three-dimensional (3D) actual flip angle imaging (AFI), 3D echo-planar imaging (EPI), and two-dimensional (2D) stimulated echo acquisition mode (STEAM). We performed a comprehensive comparison of the methods, focusing on artifacts, reproducibility, and accuracy compared to a reference 2D double angle method. For the 3D AFI method, the addition of flow-compensated gradients for diffusion damping reduced the level of physiological artifacts and improved spoiling of transverse coherences. Correction of susceptibility-induced artifacts alleviated image distortions and improved the accuracy of the 3D EPI imaging method. For the 2D STEAM method, averaging over multiple acquisitions reduced the impact of physiological noise and a new calibration method enhanced the accuracy of the B(1) (+) maps. After optimization, all methods yielded low noise B(1) (+) maps (below 2 percentage units), of the nominal flip angle value (p.u.) with a systematic bias less than 5 p.u. units. Full brain coverage was obtained in less than 5 min. The 3D AFI method required minimal postprocessing and showed little sensitivity to off-resonance and physiological effects. The 3D EPI method showed the highest level of reproducibility. The 2D STEAM method was the most time-efficient technique.

AB - MRI techniques such as quantitative imaging and parallel transmit require precise knowledge of the radio-frequency transmit field (B(1) (+)). Three published methods were optimized for robust B(1) (+) mapping at 3T in the human brain: three-dimensional (3D) actual flip angle imaging (AFI), 3D echo-planar imaging (EPI), and two-dimensional (2D) stimulated echo acquisition mode (STEAM). We performed a comprehensive comparison of the methods, focusing on artifacts, reproducibility, and accuracy compared to a reference 2D double angle method. For the 3D AFI method, the addition of flow-compensated gradients for diffusion damping reduced the level of physiological artifacts and improved spoiling of transverse coherences. Correction of susceptibility-induced artifacts alleviated image distortions and improved the accuracy of the 3D EPI imaging method. For the 2D STEAM method, averaging over multiple acquisitions reduced the impact of physiological noise and a new calibration method enhanced the accuracy of the B(1) (+) maps. After optimization, all methods yielded low noise B(1) (+) maps (below 2 percentage units), of the nominal flip angle value (p.u.) with a systematic bias less than 5 p.u. units. Full brain coverage was obtained in less than 5 min. The 3D AFI method required minimal postprocessing and showed little sensitivity to off-resonance and physiological effects. The 3D EPI method showed the highest level of reproducibility. The 2D STEAM method was the most time-efficient technique.

M3 - SCORING: Zeitschriftenaufsatz

VL - 64

SP - 229

EP - 238

JO - MAGN RESON MED

JF - MAGN RESON MED

SN - 0740-3194

IS - 1

M1 - 1

ER -