Non-contrast MR angiography at 1.5 Tesla for aortic monitoring in Marfan patients after aortic root surgery
Related Research units
Abstract
BACKGROUND: Contrast-enhanced cardiovascular magnetic resonance angiography (CE-CMRA) is the established imaging modality for patients with Marfan syndrome requiring life-long annual aortic imaging before and after aortic root replacement. Contrast-free CMRA techniques avoiding side-effects of contrast media are highly desirable for serial imaging but have not been evaluated in the postoperative setup of Marfan patients. The purpose of this study was to assess the feasibility of non-contrast balanced steady-state free precession (bSSFP) magnetic resonance imaging for aortic monitoring of postoperative patients with Marfan syndrome.
METHODS: Sixty-four adult Marfan patients after aortic root replacement were prospectively included. Fourteen patients (22%) had a residual aortic dissection after surgical treatment of type A dissection. bSSFP imaging and CE-CMRA were performed at 1.5 Tesla. Two radiologists evaluated the images regarding image quality (1 = poor, 4 = excellent), artifacts (1 = severe, 4 = none) and aortic pathologies. Readers measured the aortic diameters at defined levels in both techniques. Statistics included observer agreement for image scoring and diameter measurements and ROC analyses for comparison of the diagnostic performance of bSSFP and CE-CMRA.
RESULTS: Both readers observed no significant differences in image quality between bSSFP and CE-CMRA and found a median image quality score of 4 for both techniques (all p > .05). No significant differences were found regarding the frequency of image artifacts in both sequences (all p > .05). Sensitivity and specificity for detection of aortic dissections was 100% for both readers and techniques. Compared to bSSFP imaging, CE-CMRA resulted in higher diameters (mean bias, 0.9 mm; p < .05). The inter-observer biases of diameter measurements were not significantly different (all p > .05), except for the distal graft anastomosis (p = .001). Using both techniques, the readers correctly identified a graft suture dehiscence with aneurysm formation requiring surgery.
CONCLUSION: Unenhanced bSSFP CMR imaging allows for riskless aortic monitoring with high diagnostic accuracy in Marfan patients after aortic root surgery.
Bibliographical data
Original language | English |
---|---|
ISSN | 1097-6647 |
DOIs | |
Publication status | Published - 30.10.2017 |
PubMed | 29084542 |
---|