N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APP Mice

Standard

N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APP Mice. / Franco, Rafael; Aguinaga, David; Reyes, Irene; Canela, Enric I; Lillo, Jaume; Tarutani, Airi; Hasegawa, Masato; Del Ser-Badia, Anna; Del Rio, José A; Kreutz, Michael R; Saura, Carlos A; Navarro, Gemma.

In: FRONT MOL NEUROSCI, Vol. 11, 28.08.2018, p. 273.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{381dac027493465f9b55c25d1f1a372e,
title = "N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APP Mice",
abstract = "N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer's disease model. Interestingly, a very marked increase in NMDAR-NCS1 complexes was identified in neurons and a marked increase of both NMDAR-NCS1 and NMDAR-CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor-calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.",
keywords = "Journal Article",
author = "Rafael Franco and David Aguinaga and Irene Reyes and Canela, {Enric I} and Jaume Lillo and Airi Tarutani and Masato Hasegawa and {Del Ser-Badia}, Anna and {Del Rio}, {Jos{\'e} A} and Kreutz, {Michael R} and Saura, {Carlos A} and Gemma Navarro",
year = "2018",
month = aug,
day = "28",
doi = "10.3389/fnmol.2018.00273",
language = "English",
volume = "11",
pages = "273",
journal = "FRONT MOL NEUROSCI",
issn = "1662-5099",
publisher = "Frontiers Research Foundation",

}

RIS

TY - JOUR

T1 - N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APP Mice

AU - Franco, Rafael

AU - Aguinaga, David

AU - Reyes, Irene

AU - Canela, Enric I

AU - Lillo, Jaume

AU - Tarutani, Airi

AU - Hasegawa, Masato

AU - Del Ser-Badia, Anna

AU - Del Rio, José A

AU - Kreutz, Michael R

AU - Saura, Carlos A

AU - Navarro, Gemma

PY - 2018/8/28

Y1 - 2018/8/28

N2 - N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer's disease model. Interestingly, a very marked increase in NMDAR-NCS1 complexes was identified in neurons and a marked increase of both NMDAR-NCS1 and NMDAR-CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor-calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.

AB - N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer's disease model. Interestingly, a very marked increase in NMDAR-NCS1 complexes was identified in neurons and a marked increase of both NMDAR-NCS1 and NMDAR-CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor-calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.

KW - Journal Article

U2 - 10.3389/fnmol.2018.00273

DO - 10.3389/fnmol.2018.00273

M3 - SCORING: Journal article

C2 - 30233307

VL - 11

SP - 273

JO - FRONT MOL NEUROSCI

JF - FRONT MOL NEUROSCI

SN - 1662-5099

ER -