Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia-thalamic communication

Standard

Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia-thalamic communication. / Schwab, Bettina C; Kase, Daisuke; Zimnik, Andrew; Rosenbaum, Robert; Codianni, Marcello G; Rubin, Jonathan E; Turner, Robert S.

In: PLOS BIOL, Vol. 18, No. 10, 13.10.2020, p. e3000829.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{a4010e4a2f0c47ec8fc57b1508208384,
title = "Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia-thalamic communication",
abstract = "Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.",
author = "Schwab, {Bettina C} and Daisuke Kase and Andrew Zimnik and Robert Rosenbaum and Codianni, {Marcello G} and Rubin, {Jonathan E} and Turner, {Robert S}",
year = "2020",
month = oct,
day = "13",
doi = "10.1371/journal.pbio.3000829",
language = "English",
volume = "18",
pages = "e3000829",
journal = "PLOS BIOL",
issn = "1544-9173",
publisher = "Public Library of Science",
number = "10",

}

RIS

TY - JOUR

T1 - Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia-thalamic communication

AU - Schwab, Bettina C

AU - Kase, Daisuke

AU - Zimnik, Andrew

AU - Rosenbaum, Robert

AU - Codianni, Marcello G

AU - Rubin, Jonathan E

AU - Turner, Robert S

PY - 2020/10/13

Y1 - 2020/10/13

N2 - Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.

AB - Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.

U2 - 10.1371/journal.pbio.3000829

DO - 10.1371/journal.pbio.3000829

M3 - SCORING: Journal article

C2 - 33048920

VL - 18

SP - e3000829

JO - PLOS BIOL

JF - PLOS BIOL

SN - 1544-9173

IS - 10

ER -