Multiple C-terminal motifs of the 46-kDa mannose 6-phosphate receptor tail contribute to efficient binding of medium chains of AP-2 and AP-3.

Standard

Multiple C-terminal motifs of the 46-kDa mannose 6-phosphate receptor tail contribute to efficient binding of medium chains of AP-2 and AP-3. / Storch, Stephan; Braulke, T.

In: J BIOL CHEM, Vol. 276, No. 6, 6, 2001, p. 4298-4303.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{94484bd2444a4fde962a299005ba5653,
title = "Multiple C-terminal motifs of the 46-kDa mannose 6-phosphate receptor tail contribute to efficient binding of medium chains of AP-2 and AP-3.",
abstract = "The interaction of adaptor protein (AP) complexes with signal structures in the cytoplasmic domains of membrane proteins is required for intracellular sorting. Tyrosine- or dileucine-based motifs have been reported to bind to medium chain subunits (mu) of AP-1, AP-2, or AP-3. In the present study, we have examined the interaction of the entire 67-amino acid cytoplasmic domain of the 46-kDa mannose 6-phosphate receptor (MPR46-CT) containing tyrosine- as well as dileucine-based motifs with mu2 and mu3A chains using the yeast two-hybrid system. Both mu2 and mu3A bind specifically to the MPR46-CT. In contrast, mu3A fails to bind to the cytoplasmic domain of the 300-kDa mannose 6-phosphate receptor. Mutational analysis of the MPR46-CT revealed that the tyrosine-based motif and distal sequences rich in acidic amino acid residues are sufficient for effective binding to mu2. However, the dileucine motif was found to be one part of a consecutive complex C-terminal structure comprising tyrosine and dileucine motifs as well as clusters of acidic residues necessary for efficient binding of mu3A. Alanine substitution of 2 or 4 acidic amino acid residues of this cluster reduces the binding to mu3A much more than to mu2. The data suggest that the MPR46 is capable of interacting with different AP complexes using multiple partially overlapping sorting signals, which might depend on posttranslational modifications or subcellular localization of the receptor.",
author = "Stephan Storch and T Braulke",
year = "2001",
language = "Deutsch",
volume = "276",
pages = "4298--4303",
journal = "J BIOL CHEM",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "6",

}

RIS

TY - JOUR

T1 - Multiple C-terminal motifs of the 46-kDa mannose 6-phosphate receptor tail contribute to efficient binding of medium chains of AP-2 and AP-3.

AU - Storch, Stephan

AU - Braulke, T

PY - 2001

Y1 - 2001

N2 - The interaction of adaptor protein (AP) complexes with signal structures in the cytoplasmic domains of membrane proteins is required for intracellular sorting. Tyrosine- or dileucine-based motifs have been reported to bind to medium chain subunits (mu) of AP-1, AP-2, or AP-3. In the present study, we have examined the interaction of the entire 67-amino acid cytoplasmic domain of the 46-kDa mannose 6-phosphate receptor (MPR46-CT) containing tyrosine- as well as dileucine-based motifs with mu2 and mu3A chains using the yeast two-hybrid system. Both mu2 and mu3A bind specifically to the MPR46-CT. In contrast, mu3A fails to bind to the cytoplasmic domain of the 300-kDa mannose 6-phosphate receptor. Mutational analysis of the MPR46-CT revealed that the tyrosine-based motif and distal sequences rich in acidic amino acid residues are sufficient for effective binding to mu2. However, the dileucine motif was found to be one part of a consecutive complex C-terminal structure comprising tyrosine and dileucine motifs as well as clusters of acidic residues necessary for efficient binding of mu3A. Alanine substitution of 2 or 4 acidic amino acid residues of this cluster reduces the binding to mu3A much more than to mu2. The data suggest that the MPR46 is capable of interacting with different AP complexes using multiple partially overlapping sorting signals, which might depend on posttranslational modifications or subcellular localization of the receptor.

AB - The interaction of adaptor protein (AP) complexes with signal structures in the cytoplasmic domains of membrane proteins is required for intracellular sorting. Tyrosine- or dileucine-based motifs have been reported to bind to medium chain subunits (mu) of AP-1, AP-2, or AP-3. In the present study, we have examined the interaction of the entire 67-amino acid cytoplasmic domain of the 46-kDa mannose 6-phosphate receptor (MPR46-CT) containing tyrosine- as well as dileucine-based motifs with mu2 and mu3A chains using the yeast two-hybrid system. Both mu2 and mu3A bind specifically to the MPR46-CT. In contrast, mu3A fails to bind to the cytoplasmic domain of the 300-kDa mannose 6-phosphate receptor. Mutational analysis of the MPR46-CT revealed that the tyrosine-based motif and distal sequences rich in acidic amino acid residues are sufficient for effective binding to mu2. However, the dileucine motif was found to be one part of a consecutive complex C-terminal structure comprising tyrosine and dileucine motifs as well as clusters of acidic residues necessary for efficient binding of mu3A. Alanine substitution of 2 or 4 acidic amino acid residues of this cluster reduces the binding to mu3A much more than to mu2. The data suggest that the MPR46 is capable of interacting with different AP complexes using multiple partially overlapping sorting signals, which might depend on posttranslational modifications or subcellular localization of the receptor.

M3 - SCORING: Zeitschriftenaufsatz

VL - 276

SP - 4298

EP - 4303

JO - J BIOL CHEM

JF - J BIOL CHEM

SN - 0021-9258

IS - 6

M1 - 6

ER -