Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing - Experimental evidence for a holistic treatment approach

Standard

Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing - Experimental evidence for a holistic treatment approach. / Blümke; Ring, Annika P.; Immeyer, Jeannine; Hoff, Anke; Eisenberg, Tanya; Gerwat, Wolfram; Meyer, Franziska; Breitkreutz, Sabrina; Klinger, Lina M. ; Brandner, Johanna; Sandig, Grit; Seiffert, Marietta; Segger, Doerte; Rippke, Frank; Schweiger, Dorothea.

In: INT J COSMETIC SCI, Vol. 44, No. 3, 06.2022, p. 377-393.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

Blümke, Ring, AP, Immeyer, J, Hoff, A, Eisenberg, T, Gerwat, W, Meyer, F, Breitkreutz, S, Klinger, LM, Brandner, J, Sandig, G, Seiffert, M, Segger, D, Rippke, F & Schweiger, D 2022, 'Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing - Experimental evidence for a holistic treatment approach', INT J COSMETIC SCI, vol. 44, no. 3, pp. 377-393. https://doi.org/10.1111/ics.12784

APA

Blümke, Ring, A. P., Immeyer, J., Hoff, A., Eisenberg, T., Gerwat, W., Meyer, F., Breitkreutz, S., Klinger, L. M., Brandner, J., Sandig, G., Seiffert, M., Segger, D., Rippke, F., & Schweiger, D. (2022). Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing - Experimental evidence for a holistic treatment approach. INT J COSMETIC SCI, 44(3), 377-393. https://doi.org/10.1111/ics.12784

Vancouver

Bibtex

@article{aad023079d34441b84b7becced6a6fd3,
title = "Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing - Experimental evidence for a holistic treatment approach",
abstract = "ObjectiveSkin ageing is a multifactorial process involving formation of reactive oxygen species, consecutive inflammation with reduced epidermal and dermal cell viability and resulting damage to the extracellular matrix. Effective dermocosmetic treatment modalities should ideally address these hallmarks in a holistic approach. Here, we determined the corresponding activity profile of bakuchiol, a plant-derived meroterpene, in an array of in vitro, ex vivo and in vivo studies and compared it to retinol, currently considered as gold standard in topical antiageing cosmetics.MethodsThe antioxidative capacity and power of bakuchiol and retinol were analysed by measuring 2,2′-diphenyl-1-picrylhydrazyl (DPPH) reduction via its absorption decay and electron spin resonance spectroscopy, respectively. Effects on prostaglandin E2 (PGE2), macrophage migration inhibitory factor (MIF), fibroblast growth factor 7 (FGF7), collagen type I and VII (COL1A1, COL7A1), fibronectin (FN) levels as well as the metabolization of water-soluble tetrazolium 1 (WST-1) were determined in human dermal fibroblasts. Epidermal regeneration was assessed utilizing an in vitro wound healing model. FN protein levels were analysed ex vivo after treatment with a formulation containing bakuchiol, retinol or vehicle using suction blister fluid. Skin condition improvement was determined in vivo in a split-face comparison study after application of bakuchiol or vehicle.ResultsIn contrast to retinol, bakuchiol demonstrated high antioxidative efficacy. Levels of PGE2 and MIF were significantly decreased by both bakuchiol and retinol. Bakuchiol but not retinol significantly increased FGF7 protein levels. WST-1 metabolization levels were significantly augmented by bakuchiol and retinol. Bakuchiol and retinol application led to a significant augmentation of COL1A1, COL7A1 and FN protein levels. Wounds supplemented with bakuchiol but not retinol displayed a significant increase in epidermis regeneration. Clinically, areas treated with a bakuchiol-containing formulation showed a statistically significant increase in FN protein values after a 4-week application compared to untreated areas and areas treated with vehicle.ConclusionThese data provide evidence for the multidirectional efficacy of bakuchiol against cellular hallmarks of skin ageing. Its activity profile shares some common features with retinol but demonstrates several hitherto unknown biopositive effects in our studies, namely stimulation of the critical extracellular matrix component FN, and accelerated epidermal regeneration and wound healing.",
author = "Bl{\"u}mke and Ring, {Annika P.} and Jeannine Immeyer and Anke Hoff and Tanya Eisenberg and Wolfram Gerwat and Franziska Meyer and Sabrina Breitkreutz and Klinger, {Lina M.} and Johanna Brandner and Grit Sandig and Marietta Seiffert and Doerte Segger and Frank Rippke and Dorothea Schweiger",
year = "2022",
month = jun,
doi = "10.1111/ics.12784",
language = "English",
volume = "44",
pages = "377--393",
journal = "INT J COSMETIC SCI",
issn = "0142-5463",
publisher = "Wiley-Blackwell Publishing Ltd",
number = "3",

}

RIS

TY - JOUR

T1 - Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing - Experimental evidence for a holistic treatment approach

AU - Blümke,

AU - Ring, Annika P.

AU - Immeyer, Jeannine

AU - Hoff, Anke

AU - Eisenberg, Tanya

AU - Gerwat, Wolfram

AU - Meyer, Franziska

AU - Breitkreutz, Sabrina

AU - Klinger, Lina M.

AU - Brandner, Johanna

AU - Sandig, Grit

AU - Seiffert, Marietta

AU - Segger, Doerte

AU - Rippke, Frank

AU - Schweiger, Dorothea

PY - 2022/6

Y1 - 2022/6

N2 - ObjectiveSkin ageing is a multifactorial process involving formation of reactive oxygen species, consecutive inflammation with reduced epidermal and dermal cell viability and resulting damage to the extracellular matrix. Effective dermocosmetic treatment modalities should ideally address these hallmarks in a holistic approach. Here, we determined the corresponding activity profile of bakuchiol, a plant-derived meroterpene, in an array of in vitro, ex vivo and in vivo studies and compared it to retinol, currently considered as gold standard in topical antiageing cosmetics.MethodsThe antioxidative capacity and power of bakuchiol and retinol were analysed by measuring 2,2′-diphenyl-1-picrylhydrazyl (DPPH) reduction via its absorption decay and electron spin resonance spectroscopy, respectively. Effects on prostaglandin E2 (PGE2), macrophage migration inhibitory factor (MIF), fibroblast growth factor 7 (FGF7), collagen type I and VII (COL1A1, COL7A1), fibronectin (FN) levels as well as the metabolization of water-soluble tetrazolium 1 (WST-1) were determined in human dermal fibroblasts. Epidermal regeneration was assessed utilizing an in vitro wound healing model. FN protein levels were analysed ex vivo after treatment with a formulation containing bakuchiol, retinol or vehicle using suction blister fluid. Skin condition improvement was determined in vivo in a split-face comparison study after application of bakuchiol or vehicle.ResultsIn contrast to retinol, bakuchiol demonstrated high antioxidative efficacy. Levels of PGE2 and MIF were significantly decreased by both bakuchiol and retinol. Bakuchiol but not retinol significantly increased FGF7 protein levels. WST-1 metabolization levels were significantly augmented by bakuchiol and retinol. Bakuchiol and retinol application led to a significant augmentation of COL1A1, COL7A1 and FN protein levels. Wounds supplemented with bakuchiol but not retinol displayed a significant increase in epidermis regeneration. Clinically, areas treated with a bakuchiol-containing formulation showed a statistically significant increase in FN protein values after a 4-week application compared to untreated areas and areas treated with vehicle.ConclusionThese data provide evidence for the multidirectional efficacy of bakuchiol against cellular hallmarks of skin ageing. Its activity profile shares some common features with retinol but demonstrates several hitherto unknown biopositive effects in our studies, namely stimulation of the critical extracellular matrix component FN, and accelerated epidermal regeneration and wound healing.

AB - ObjectiveSkin ageing is a multifactorial process involving formation of reactive oxygen species, consecutive inflammation with reduced epidermal and dermal cell viability and resulting damage to the extracellular matrix. Effective dermocosmetic treatment modalities should ideally address these hallmarks in a holistic approach. Here, we determined the corresponding activity profile of bakuchiol, a plant-derived meroterpene, in an array of in vitro, ex vivo and in vivo studies and compared it to retinol, currently considered as gold standard in topical antiageing cosmetics.MethodsThe antioxidative capacity and power of bakuchiol and retinol were analysed by measuring 2,2′-diphenyl-1-picrylhydrazyl (DPPH) reduction via its absorption decay and electron spin resonance spectroscopy, respectively. Effects on prostaglandin E2 (PGE2), macrophage migration inhibitory factor (MIF), fibroblast growth factor 7 (FGF7), collagen type I and VII (COL1A1, COL7A1), fibronectin (FN) levels as well as the metabolization of water-soluble tetrazolium 1 (WST-1) were determined in human dermal fibroblasts. Epidermal regeneration was assessed utilizing an in vitro wound healing model. FN protein levels were analysed ex vivo after treatment with a formulation containing bakuchiol, retinol or vehicle using suction blister fluid. Skin condition improvement was determined in vivo in a split-face comparison study after application of bakuchiol or vehicle.ResultsIn contrast to retinol, bakuchiol demonstrated high antioxidative efficacy. Levels of PGE2 and MIF were significantly decreased by both bakuchiol and retinol. Bakuchiol but not retinol significantly increased FGF7 protein levels. WST-1 metabolization levels were significantly augmented by bakuchiol and retinol. Bakuchiol and retinol application led to a significant augmentation of COL1A1, COL7A1 and FN protein levels. Wounds supplemented with bakuchiol but not retinol displayed a significant increase in epidermis regeneration. Clinically, areas treated with a bakuchiol-containing formulation showed a statistically significant increase in FN protein values after a 4-week application compared to untreated areas and areas treated with vehicle.ConclusionThese data provide evidence for the multidirectional efficacy of bakuchiol against cellular hallmarks of skin ageing. Its activity profile shares some common features with retinol but demonstrates several hitherto unknown biopositive effects in our studies, namely stimulation of the critical extracellular matrix component FN, and accelerated epidermal regeneration and wound healing.

U2 - 10.1111/ics.12784

DO - 10.1111/ics.12784

M3 - SCORING: Journal article

VL - 44

SP - 377

EP - 393

JO - INT J COSMETIC SCI

JF - INT J COSMETIC SCI

SN - 0142-5463

IS - 3

ER -