Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters.

Standard

Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. / Wischnewski, Frank; Friese, Olaf; Pantel, Klaus; Schwarzenbach, Heidi.

In: MOL CANCER RES, Vol. 5, No. 7, 7, 2007, p. 749-759.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{f683e4d3727c477bb6a94365a293c99f,
title = "Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters.",
abstract = "Promoter hypermethylation is responsible for the restricted expression of the tumor-associated MAGE antigens. In order to elucidate the mechanism underlying methylation-dependent repression, we examined the involvement of methyl-CpG binding proteins, MBD1, MBD2a, and MeCP2, in silencing of MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 genes. Electrophoretic mobility shift assays displayed binding of MBD1 to the methylated and unmethylated MAGE-A promoters. Using chromatin immunoprecipitation assays, in vivo binding of MBD1 and MeCP2 to the promoters could be observed in MCF-7 and T47D cells. Transient transfection assays of MCF-7 cells were done with the transcriptional repression domains (TRD) of MBD1, MBD2a, and MeCP2, and MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 promoters. Whereas the TRD of MBD1 and MeCP2 repressed the MAGE-A promoters, the TRD of MBD2 had no inhibiting effect on the promoter activity. Furthermore, cotransfections of Mbd1-deficient mouse fibroblasts and MCF-7 cells with MBD2a, MeCP2, and the MBD1 splice variants, 1v1 and 1v3, showed that strong methylation-dependent repression of the MAGE-A promoters could not be further down-regulated by these proteins. However, the two MBD1 splice variants, 1v1 and 1v3, were able to repress the basal activity of unmethylated MAGE-A promoters. Additional cotransfection experiments with both isoforms of MBD1 and the transcription factor Ets-1 showed that Ets-1 could not abrogate the MBD1-mediated suppression. In contrast with the repressive effect mediated by MBD1, MBD2a was found to up-regulate the basal activity of the promoters. In conclusion, these data show, for the first time, the involvement of methyl-CpG binding domain proteins in the regulation of the MAGE-A genes.",
author = "Frank Wischnewski and Olaf Friese and Klaus Pantel and Heidi Schwarzenbach",
year = "2007",
language = "Deutsch",
volume = "5",
pages = "749--759",
journal = "MOL CANCER RES",
issn = "1541-7786",
publisher = "American Association for Cancer Research Inc.",
number = "7",

}

RIS

TY - JOUR

T1 - Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters.

AU - Wischnewski, Frank

AU - Friese, Olaf

AU - Pantel, Klaus

AU - Schwarzenbach, Heidi

PY - 2007

Y1 - 2007

N2 - Promoter hypermethylation is responsible for the restricted expression of the tumor-associated MAGE antigens. In order to elucidate the mechanism underlying methylation-dependent repression, we examined the involvement of methyl-CpG binding proteins, MBD1, MBD2a, and MeCP2, in silencing of MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 genes. Electrophoretic mobility shift assays displayed binding of MBD1 to the methylated and unmethylated MAGE-A promoters. Using chromatin immunoprecipitation assays, in vivo binding of MBD1 and MeCP2 to the promoters could be observed in MCF-7 and T47D cells. Transient transfection assays of MCF-7 cells were done with the transcriptional repression domains (TRD) of MBD1, MBD2a, and MeCP2, and MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 promoters. Whereas the TRD of MBD1 and MeCP2 repressed the MAGE-A promoters, the TRD of MBD2 had no inhibiting effect on the promoter activity. Furthermore, cotransfections of Mbd1-deficient mouse fibroblasts and MCF-7 cells with MBD2a, MeCP2, and the MBD1 splice variants, 1v1 and 1v3, showed that strong methylation-dependent repression of the MAGE-A promoters could not be further down-regulated by these proteins. However, the two MBD1 splice variants, 1v1 and 1v3, were able to repress the basal activity of unmethylated MAGE-A promoters. Additional cotransfection experiments with both isoforms of MBD1 and the transcription factor Ets-1 showed that Ets-1 could not abrogate the MBD1-mediated suppression. In contrast with the repressive effect mediated by MBD1, MBD2a was found to up-regulate the basal activity of the promoters. In conclusion, these data show, for the first time, the involvement of methyl-CpG binding domain proteins in the regulation of the MAGE-A genes.

AB - Promoter hypermethylation is responsible for the restricted expression of the tumor-associated MAGE antigens. In order to elucidate the mechanism underlying methylation-dependent repression, we examined the involvement of methyl-CpG binding proteins, MBD1, MBD2a, and MeCP2, in silencing of MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 genes. Electrophoretic mobility shift assays displayed binding of MBD1 to the methylated and unmethylated MAGE-A promoters. Using chromatin immunoprecipitation assays, in vivo binding of MBD1 and MeCP2 to the promoters could be observed in MCF-7 and T47D cells. Transient transfection assays of MCF-7 cells were done with the transcriptional repression domains (TRD) of MBD1, MBD2a, and MeCP2, and MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 promoters. Whereas the TRD of MBD1 and MeCP2 repressed the MAGE-A promoters, the TRD of MBD2 had no inhibiting effect on the promoter activity. Furthermore, cotransfections of Mbd1-deficient mouse fibroblasts and MCF-7 cells with MBD2a, MeCP2, and the MBD1 splice variants, 1v1 and 1v3, showed that strong methylation-dependent repression of the MAGE-A promoters could not be further down-regulated by these proteins. However, the two MBD1 splice variants, 1v1 and 1v3, were able to repress the basal activity of unmethylated MAGE-A promoters. Additional cotransfection experiments with both isoforms of MBD1 and the transcription factor Ets-1 showed that Ets-1 could not abrogate the MBD1-mediated suppression. In contrast with the repressive effect mediated by MBD1, MBD2a was found to up-regulate the basal activity of the promoters. In conclusion, these data show, for the first time, the involvement of methyl-CpG binding domain proteins in the regulation of the MAGE-A genes.

M3 - SCORING: Zeitschriftenaufsatz

VL - 5

SP - 749

EP - 759

JO - MOL CANCER RES

JF - MOL CANCER RES

SN - 1541-7786

IS - 7

M1 - 7

ER -