Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing.

Standard

Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing. / Claes, Lutz; Reusch, Martina; Göckelmann, Melanie; Ohnmacht, Michael; Wehner, Tim; Amling, Michael; Beil, Frank Timo; Ignatius, Anita.

In: J ORTHOP RES, Vol. 29, No. 3, 3, 2011, p. 425-432.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

Claes, L, Reusch, M, Göckelmann, M, Ohnmacht, M, Wehner, T, Amling, M, Beil, FT & Ignatius, A 2011, 'Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing.', J ORTHOP RES, vol. 29, no. 3, 3, pp. 425-432. <http://www.ncbi.nlm.nih.gov/pubmed/20882588?dopt=Citation>

APA

Vancouver

Claes L, Reusch M, Göckelmann M, Ohnmacht M, Wehner T, Amling M et al. Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing. J ORTHOP RES. 2011;29(3):425-432. 3.

Bibtex

@article{c0a4cb579f22499e9b36e6ce01d95ef6,
title = "Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing.",
abstract = "It is generally supposed that the pattern of fracture healing in trabecular metaphyseal bone differs from that of diaphyseal fractures. However, few experimental studies to date have been performed, even though clinically many fractures occur in metaphyseal bone. Particularly, the influence of biomechanical factors has not yet been investigated under standardized conditions. Our aim was to correlate the interfragmentary strain (IFS) with the bone-healing outcome in a controlled metaphyseal fracture model in sheep. Twelve sheep received a partial osteotomy in the distal femoral condyle close to the trochlea. The determination of the IFS by in vivo X-ray analyses and a finite element model revealed that the deflection of the osteotomy gap by the patello-femoral force during walking provoked increasing strains of up to 40%. Bone healing was evaluated after 8 weeks by the assessment of the bone mineral density and by histomorphometry in regions of interest that displayed differing magnitudes of IFS. In areas with strains below 5% significantly less bone formation occurred compared to areas with higher strains (6-20%). For strains larger than 20% fibrocartilage layers were observed. Low IFS (",
author = "Lutz Claes and Martina Reusch and Melanie G{\"o}ckelmann and Michael Ohnmacht and Tim Wehner and Michael Amling and Beil, {Frank Timo} and Anita Ignatius",
year = "2011",
language = "Deutsch",
volume = "29",
pages = "425--432",
journal = "J ORTHOP RES",
issn = "0736-0266",
publisher = "John Wiley and Sons Inc.",
number = "3",

}

RIS

TY - JOUR

T1 - Metaphyseal fracture healing follows similar biomechanical rules as diaphyseal healing.

AU - Claes, Lutz

AU - Reusch, Martina

AU - Göckelmann, Melanie

AU - Ohnmacht, Michael

AU - Wehner, Tim

AU - Amling, Michael

AU - Beil, Frank Timo

AU - Ignatius, Anita

PY - 2011

Y1 - 2011

N2 - It is generally supposed that the pattern of fracture healing in trabecular metaphyseal bone differs from that of diaphyseal fractures. However, few experimental studies to date have been performed, even though clinically many fractures occur in metaphyseal bone. Particularly, the influence of biomechanical factors has not yet been investigated under standardized conditions. Our aim was to correlate the interfragmentary strain (IFS) with the bone-healing outcome in a controlled metaphyseal fracture model in sheep. Twelve sheep received a partial osteotomy in the distal femoral condyle close to the trochlea. The determination of the IFS by in vivo X-ray analyses and a finite element model revealed that the deflection of the osteotomy gap by the patello-femoral force during walking provoked increasing strains of up to 40%. Bone healing was evaluated after 8 weeks by the assessment of the bone mineral density and by histomorphometry in regions of interest that displayed differing magnitudes of IFS. In areas with strains below 5% significantly less bone formation occurred compared to areas with higher strains (6-20%). For strains larger than 20% fibrocartilage layers were observed. Low IFS (

AB - It is generally supposed that the pattern of fracture healing in trabecular metaphyseal bone differs from that of diaphyseal fractures. However, few experimental studies to date have been performed, even though clinically many fractures occur in metaphyseal bone. Particularly, the influence of biomechanical factors has not yet been investigated under standardized conditions. Our aim was to correlate the interfragmentary strain (IFS) with the bone-healing outcome in a controlled metaphyseal fracture model in sheep. Twelve sheep received a partial osteotomy in the distal femoral condyle close to the trochlea. The determination of the IFS by in vivo X-ray analyses and a finite element model revealed that the deflection of the osteotomy gap by the patello-femoral force during walking provoked increasing strains of up to 40%. Bone healing was evaluated after 8 weeks by the assessment of the bone mineral density and by histomorphometry in regions of interest that displayed differing magnitudes of IFS. In areas with strains below 5% significantly less bone formation occurred compared to areas with higher strains (6-20%). For strains larger than 20% fibrocartilage layers were observed. Low IFS (

M3 - SCORING: Zeitschriftenaufsatz

VL - 29

SP - 425

EP - 432

JO - J ORTHOP RES

JF - J ORTHOP RES

SN - 0736-0266

IS - 3

M1 - 3

ER -