Melatonin receptor signaling in pregnant and nonpregnant rat uterine myocytes as probed by large conductance Ca2+-activated K+ channel activity.

  • Frank Steffens
  • Xiao-Bo Zhou
  • Ulrike Sausbier
  • Claudia Sailer
  • Karin Motejlek
  • Peter Ruth
  • James Olcese
  • Michael Korth
  • Thomas Wieland

Abstract

The mRNAs of MT1 and MT2 melatonin receptors are present in cells from nonpregnant (NPM) and pregnant (PM) rat myometrium. To investigate the coupling of melatonin receptors to Gq- and Gi-type of heterotrimeric G proteins, we analyzed the activity of large-conductance Ca2+-activated K+ (BKCa) channels, the expression of which in the uterus is confined to smooth muscle cells. The melatonin receptor agonist 2-iodomelatonin induced a pertussis toxin (PTX)-insensitive increase in channel open probability that was blocked by the nonselective antagonist luzindole. The 2-iodomelatonin effect on channel open probability was suppressed by overexpression of the Gqalpha-inactivating protein RGS16 and the phospholipase C inhibitor U-73122. The activity of BKCa channels is differentially regulated by protein kinase A (PKA) in NPM and PM cells. Thus, the beta-adrenoceptor agonist isoprenaline inhibited the BKCa channel conducted whole-cell outward current (Iout) in NPM cells and enhanced Iout in PM cells. Additional application of 2-iodomelatonin antagonized the isoprenaline effect on Iout in NPM cells but enhanced Iout in PM cells. All 2-iodomelatonin effects on Iout were sensitive to PTX treatment and the PKA inhibitor H-89. We therefore conclude that melatonin activates both the PTX-insensitive Gq/phospholipase C/Ca2+ and the PTX-sensitive Gi/cAMP/PKA signaling pathway in rat myometrium.

Bibliographical data

Original languageGerman
Article number10
ISSN0888-8809
Publication statusPublished - 2003
pubmed 12869590