Lysosomal targeting of the CLN7 membrane glycoprotein and transport via the plasma membrane require a dileucine motif.

Standard

Lysosomal targeting of the CLN7 membrane glycoprotein and transport via the plasma membrane require a dileucine motif. / Steenhuis, Pieter; Herder, Stephanie; Gelis, Suyin; Braulke, Thomas; Storch, Stephan.

In: TRAFFIC, Vol. 11, No. 7, 7, 2010, p. 987-1000.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{a120034e18984ecfacd67f752a6b581d,
title = "Lysosomal targeting of the CLN7 membrane glycoprotein and transport via the plasma membrane require a dileucine motif.",
abstract = "CLN7 is a polytopic lysosomal membrane protein deficient in variant late infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. In this study fluorescence protease protection assays and mutational analyses revealed the N- and C-terminal tails of CLN7 in the cytosol and two N-glycosylation sites at N371 and N376. Both partially and non-glycosylated CLN7 were correctly transported to lysosomes. To identify lysosomal targeting motifs, we generated CD4-chimera fused to the N- and C-terminal domains of CLN7. Lysosomal localization of the chimeric proteins requires a consensus acidic dileucine-based motif in the N-terminus and two tandem tyrosine-based signals in the C-terminus. Mutation of these sorting motifs resulted in cell surface redistribution of CD4 chimeras. However, the dileucine-based motif is of critical importance for lysosomal localization of the full-length CLN7 in different cell lines. Cell surface biotinylation revealed that at equilibrium 22% of total CLN7 is localized at the plasma membrane. Mutation of the dileucine motif or the co-expression of dominant-negative mutant dynamin K44A led to a further increase of CLN7 at the plasma membrane. Our data demonstrate that CLN7 contains several cytoplasmic lysosomal targeting signals of which the N-terminal dileucine-based motif is required for the predominant lysosomal targeting along the indirect pathway and clathrin-mediated endocytosis of CLN7.",
author = "Pieter Steenhuis and Stephanie Herder and Suyin Gelis and Thomas Braulke and Stephan Storch",
year = "2010",
language = "Deutsch",
volume = "11",
pages = "987--1000",
journal = "TRAFFIC",
issn = "1398-9219",
publisher = "Blackwell Munksgaard",
number = "7",

}

RIS

TY - JOUR

T1 - Lysosomal targeting of the CLN7 membrane glycoprotein and transport via the plasma membrane require a dileucine motif.

AU - Steenhuis, Pieter

AU - Herder, Stephanie

AU - Gelis, Suyin

AU - Braulke, Thomas

AU - Storch, Stephan

PY - 2010

Y1 - 2010

N2 - CLN7 is a polytopic lysosomal membrane protein deficient in variant late infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. In this study fluorescence protease protection assays and mutational analyses revealed the N- and C-terminal tails of CLN7 in the cytosol and two N-glycosylation sites at N371 and N376. Both partially and non-glycosylated CLN7 were correctly transported to lysosomes. To identify lysosomal targeting motifs, we generated CD4-chimera fused to the N- and C-terminal domains of CLN7. Lysosomal localization of the chimeric proteins requires a consensus acidic dileucine-based motif in the N-terminus and two tandem tyrosine-based signals in the C-terminus. Mutation of these sorting motifs resulted in cell surface redistribution of CD4 chimeras. However, the dileucine-based motif is of critical importance for lysosomal localization of the full-length CLN7 in different cell lines. Cell surface biotinylation revealed that at equilibrium 22% of total CLN7 is localized at the plasma membrane. Mutation of the dileucine motif or the co-expression of dominant-negative mutant dynamin K44A led to a further increase of CLN7 at the plasma membrane. Our data demonstrate that CLN7 contains several cytoplasmic lysosomal targeting signals of which the N-terminal dileucine-based motif is required for the predominant lysosomal targeting along the indirect pathway and clathrin-mediated endocytosis of CLN7.

AB - CLN7 is a polytopic lysosomal membrane protein deficient in variant late infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. In this study fluorescence protease protection assays and mutational analyses revealed the N- and C-terminal tails of CLN7 in the cytosol and two N-glycosylation sites at N371 and N376. Both partially and non-glycosylated CLN7 were correctly transported to lysosomes. To identify lysosomal targeting motifs, we generated CD4-chimera fused to the N- and C-terminal domains of CLN7. Lysosomal localization of the chimeric proteins requires a consensus acidic dileucine-based motif in the N-terminus and two tandem tyrosine-based signals in the C-terminus. Mutation of these sorting motifs resulted in cell surface redistribution of CD4 chimeras. However, the dileucine-based motif is of critical importance for lysosomal localization of the full-length CLN7 in different cell lines. Cell surface biotinylation revealed that at equilibrium 22% of total CLN7 is localized at the plasma membrane. Mutation of the dileucine motif or the co-expression of dominant-negative mutant dynamin K44A led to a further increase of CLN7 at the plasma membrane. Our data demonstrate that CLN7 contains several cytoplasmic lysosomal targeting signals of which the N-terminal dileucine-based motif is required for the predominant lysosomal targeting along the indirect pathway and clathrin-mediated endocytosis of CLN7.

M3 - SCORING: Zeitschriftenaufsatz

VL - 11

SP - 987

EP - 1000

JO - TRAFFIC

JF - TRAFFIC

SN - 1398-9219

IS - 7

M1 - 7

ER -