Long QT 1 mutation KCNQ1A344V increases local anesthetic sensitivity of the slowly activating delayed rectifier potassium current.

Standard

Long QT 1 mutation KCNQ1A344V increases local anesthetic sensitivity of the slowly activating delayed rectifier potassium current. / Siebrands, Cornelia C; Binder, Stephan; Eckhoff, Ulrike; Schmitt, Nicole; Friederich, Patrick.

In: ANESTHESIOLOGY, Vol. 105, No. 3, 3, 2006, p. 511-520.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{26e125a3eb4249429e2134b4155ac359,
title = "Long QT 1 mutation KCNQ1A344V increases local anesthetic sensitivity of the slowly activating delayed rectifier potassium current.",
abstract = "BACKGROUND: Anesthesia in patients with long QT syndrome (LQTS) is a matter of concern. Congenital LQTS is most frequently caused by mutations in KCNQ1 (Kv7.1), whereas drug-induced LQTS is a consequence of HERG (human ether-a-go-go-related gene) channel inhibition. The aim of this study was to investigate whether the LQT1 mutation A344V in the S6 region of KCNQ1, at a position corresponding to the local anesthetic binding site in HERG, may render drug insensitive KCNQ1 channels into a toxicologically relevant target of these pharmacologic agents. This may suggest that LQTS constitutes not only a nonspecific but also a specific pharmacogenetic risk factor for anesthesia. METHODS: The authors examined electrophysiologic and pharmacologic properties of wild-type and mutant KCNQ1 channels. The effects of bupivacaine, ropivacaine, and mepivacaine were investigated using two-electrode voltage clamp and whole cell patch clamp recordings. RESULTS: The mutation A344V induced voltage-dependent inactivation in homomeric KCNQ1 channels and shifted the voltage dependence of KCNQ1/KCNE1 channel activation by +30 mV. The mutation furthermore increased the sensitivity of KCNQ1/KCNE1 channels for bupivacaine 22-fold (KCNQ1wt/KCNE1: IC50 = 2,431 +/- 582 microM, n = 20; KCNQ1A344V/KCNE1: IC50 = 110 +/- 9 microM, n = 24). Pharmacologic effects of the mutant channels were dominant when mutant and wild-type channels were coexpressed. Simulation of cardiac action potentials with the Luo-Rudy model yielded a prolongation of the cardiac action potential duration and induction of early afterdepolarizations by the mutation A344V that were aggravated by local anesthetic intoxication. CONCLUSIONS: The results indicate that certain forms of the LQTS may constitute a specific pharmacogenetic risk factor for regional anesthesia.",
author = "Siebrands, {Cornelia C} and Stephan Binder and Ulrike Eckhoff and Nicole Schmitt and Patrick Friederich",
year = "2006",
language = "Deutsch",
volume = "105",
pages = "511--520",
journal = "ANESTHESIOLOGY",
issn = "0003-3022",
publisher = "Lippincott Williams and Wilkins",
number = "3",

}

RIS

TY - JOUR

T1 - Long QT 1 mutation KCNQ1A344V increases local anesthetic sensitivity of the slowly activating delayed rectifier potassium current.

AU - Siebrands, Cornelia C

AU - Binder, Stephan

AU - Eckhoff, Ulrike

AU - Schmitt, Nicole

AU - Friederich, Patrick

PY - 2006

Y1 - 2006

N2 - BACKGROUND: Anesthesia in patients with long QT syndrome (LQTS) is a matter of concern. Congenital LQTS is most frequently caused by mutations in KCNQ1 (Kv7.1), whereas drug-induced LQTS is a consequence of HERG (human ether-a-go-go-related gene) channel inhibition. The aim of this study was to investigate whether the LQT1 mutation A344V in the S6 region of KCNQ1, at a position corresponding to the local anesthetic binding site in HERG, may render drug insensitive KCNQ1 channels into a toxicologically relevant target of these pharmacologic agents. This may suggest that LQTS constitutes not only a nonspecific but also a specific pharmacogenetic risk factor for anesthesia. METHODS: The authors examined electrophysiologic and pharmacologic properties of wild-type and mutant KCNQ1 channels. The effects of bupivacaine, ropivacaine, and mepivacaine were investigated using two-electrode voltage clamp and whole cell patch clamp recordings. RESULTS: The mutation A344V induced voltage-dependent inactivation in homomeric KCNQ1 channels and shifted the voltage dependence of KCNQ1/KCNE1 channel activation by +30 mV. The mutation furthermore increased the sensitivity of KCNQ1/KCNE1 channels for bupivacaine 22-fold (KCNQ1wt/KCNE1: IC50 = 2,431 +/- 582 microM, n = 20; KCNQ1A344V/KCNE1: IC50 = 110 +/- 9 microM, n = 24). Pharmacologic effects of the mutant channels were dominant when mutant and wild-type channels were coexpressed. Simulation of cardiac action potentials with the Luo-Rudy model yielded a prolongation of the cardiac action potential duration and induction of early afterdepolarizations by the mutation A344V that were aggravated by local anesthetic intoxication. CONCLUSIONS: The results indicate that certain forms of the LQTS may constitute a specific pharmacogenetic risk factor for regional anesthesia.

AB - BACKGROUND: Anesthesia in patients with long QT syndrome (LQTS) is a matter of concern. Congenital LQTS is most frequently caused by mutations in KCNQ1 (Kv7.1), whereas drug-induced LQTS is a consequence of HERG (human ether-a-go-go-related gene) channel inhibition. The aim of this study was to investigate whether the LQT1 mutation A344V in the S6 region of KCNQ1, at a position corresponding to the local anesthetic binding site in HERG, may render drug insensitive KCNQ1 channels into a toxicologically relevant target of these pharmacologic agents. This may suggest that LQTS constitutes not only a nonspecific but also a specific pharmacogenetic risk factor for anesthesia. METHODS: The authors examined electrophysiologic and pharmacologic properties of wild-type and mutant KCNQ1 channels. The effects of bupivacaine, ropivacaine, and mepivacaine were investigated using two-electrode voltage clamp and whole cell patch clamp recordings. RESULTS: The mutation A344V induced voltage-dependent inactivation in homomeric KCNQ1 channels and shifted the voltage dependence of KCNQ1/KCNE1 channel activation by +30 mV. The mutation furthermore increased the sensitivity of KCNQ1/KCNE1 channels for bupivacaine 22-fold (KCNQ1wt/KCNE1: IC50 = 2,431 +/- 582 microM, n = 20; KCNQ1A344V/KCNE1: IC50 = 110 +/- 9 microM, n = 24). Pharmacologic effects of the mutant channels were dominant when mutant and wild-type channels were coexpressed. Simulation of cardiac action potentials with the Luo-Rudy model yielded a prolongation of the cardiac action potential duration and induction of early afterdepolarizations by the mutation A344V that were aggravated by local anesthetic intoxication. CONCLUSIONS: The results indicate that certain forms of the LQTS may constitute a specific pharmacogenetic risk factor for regional anesthesia.

M3 - SCORING: Zeitschriftenaufsatz

VL - 105

SP - 511

EP - 520

JO - ANESTHESIOLOGY

JF - ANESTHESIOLOGY

SN - 0003-3022

IS - 3

M1 - 3

ER -