Local opposite orientation preferences in V1

  • Arjen Alink
  • Alexander Walther
  • Alexandra Krugliak
  • Nikolaus Kriegeskorte

Related Research units

Abstract

The orientation of a visual grating can be decoded from human primary visual cortex (V1) using functional magnetic resonance imaging (fMRI) at conventional resolutions (2-3 mm voxel width, 3T scanner). It is unclear to what extent this information originates from different spatial scales of neuronal selectivity, ranging from orientation columns to global areal maps. According to the global-areal-map account, fMRI orientation decoding relies exclusively on fMRI voxels in V1 exhibiting a radial or vertical preference. Here we show, by contrast, that 2-mm isotropic voxels in a small patch of V1 within a quarterfield representation exhibit reliable opposite selectivities. Sets of voxels with opposite selectivities are locally intermingled and each set can support orientation decoding. This indicates that global areal maps cannot fully account for orientation information in fMRI and demonstrates that fMRI also reflects fine-grained patterns of neuronal selectivity.

Bibliographical data

Original languageEnglish
ISSN2045-2322
DOIs
Publication statusPublished - 02.08.2017
PubMed 28769042