Lipopolysaccharide, IFN-gamma, and IFN-beta induce expression of the thiol-sensitive ART2.1 Ecto-ADP-ribosyltransferase in murine macrophages.

Standard

Lipopolysaccharide, IFN-gamma, and IFN-beta induce expression of the thiol-sensitive ART2.1 Ecto-ADP-ribosyltransferase in murine macrophages. / Hong, Shiyuan; Brass, Anette; Seman, Michel; Haag, Friedrich; Koch Nolte, Friedrich; Dubyak, George R.

In: J IMMUNOL, Vol. 179, No. 9, 9, 2007, p. 6215-6227.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{748c8d29dac9476db00a3eea36e2c945,
title = "Lipopolysaccharide, IFN-gamma, and IFN-beta induce expression of the thiol-sensitive ART2.1 Ecto-ADP-ribosyltransferase in murine macrophages.",
abstract = "Nicotinamide adenosine dinucleotide (NAD) can act as a modulator of multiple immune and inflammatory responses when released into extracellular compartments. These actions of extracellular NAD are largely mediated by a family of mammalian ecto-ADP-ribosyltransferases (ARTs) that covalently modify target extracellular or cell surface proteins by transferring ADP-ribose to arginine or cysteine residues. In this study, we report that bone marrow-derived macrophages (BMDM) from BALB/c mice lack constitutive expression of any of the six murine ecto-ART subtypes, but selectively up-regulate ART2.1 in response to multiple proinflammatory mediators including agonists for TLR and type I and type II IFN. Stimulation of BMDM with LPS, IFN-beta, or IFN-gamma induced high expression of ART2.1, but not ART2.2, as a GPI-anchored cell surface ectoenzyme. ART2.1 expression in response to LPS was potentiated by inhibition of ERK1/2 signaling, but inhibited by blockade of the NF-kappaB, PI3K, and JAK-STAT pathways or the presence of neutralizing anti-IFN-beta. The catalytic function of the induced cell surface ART2.1 was strictly dependent on the presence of extracellular thiol-reducing cofactors, suggesting that in vivo activity of ART2.1-expressing macrophages may be potentiated in hypoxic or ischemic compartments. Consistent with the mutated art2a gene in C57BL/6 mice, LPS- or IFN-stimulated BMDM from this strain lacked expression of cell surface ART2 activity in the presence or absence of extracellular thiol reductants. Collectively, these studies identify ART2.1 as a new candidate for linking autocrine/paracrine activation of inflammatory macrophages to the release of NAD, a critical intracellular metabolite.",
author = "Shiyuan Hong and Anette Brass and Michel Seman and Friedrich Haag and {Koch Nolte}, Friedrich and Dubyak, {George R}",
year = "2007",
language = "Deutsch",
volume = "179",
pages = "6215--6227",
journal = "J IMMUNOL",
issn = "0022-1767",
publisher = "American Association of Immunologists",
number = "9",

}

RIS

TY - JOUR

T1 - Lipopolysaccharide, IFN-gamma, and IFN-beta induce expression of the thiol-sensitive ART2.1 Ecto-ADP-ribosyltransferase in murine macrophages.

AU - Hong, Shiyuan

AU - Brass, Anette

AU - Seman, Michel

AU - Haag, Friedrich

AU - Koch Nolte, Friedrich

AU - Dubyak, George R

PY - 2007

Y1 - 2007

N2 - Nicotinamide adenosine dinucleotide (NAD) can act as a modulator of multiple immune and inflammatory responses when released into extracellular compartments. These actions of extracellular NAD are largely mediated by a family of mammalian ecto-ADP-ribosyltransferases (ARTs) that covalently modify target extracellular or cell surface proteins by transferring ADP-ribose to arginine or cysteine residues. In this study, we report that bone marrow-derived macrophages (BMDM) from BALB/c mice lack constitutive expression of any of the six murine ecto-ART subtypes, but selectively up-regulate ART2.1 in response to multiple proinflammatory mediators including agonists for TLR and type I and type II IFN. Stimulation of BMDM with LPS, IFN-beta, or IFN-gamma induced high expression of ART2.1, but not ART2.2, as a GPI-anchored cell surface ectoenzyme. ART2.1 expression in response to LPS was potentiated by inhibition of ERK1/2 signaling, but inhibited by blockade of the NF-kappaB, PI3K, and JAK-STAT pathways or the presence of neutralizing anti-IFN-beta. The catalytic function of the induced cell surface ART2.1 was strictly dependent on the presence of extracellular thiol-reducing cofactors, suggesting that in vivo activity of ART2.1-expressing macrophages may be potentiated in hypoxic or ischemic compartments. Consistent with the mutated art2a gene in C57BL/6 mice, LPS- or IFN-stimulated BMDM from this strain lacked expression of cell surface ART2 activity in the presence or absence of extracellular thiol reductants. Collectively, these studies identify ART2.1 as a new candidate for linking autocrine/paracrine activation of inflammatory macrophages to the release of NAD, a critical intracellular metabolite.

AB - Nicotinamide adenosine dinucleotide (NAD) can act as a modulator of multiple immune and inflammatory responses when released into extracellular compartments. These actions of extracellular NAD are largely mediated by a family of mammalian ecto-ADP-ribosyltransferases (ARTs) that covalently modify target extracellular or cell surface proteins by transferring ADP-ribose to arginine or cysteine residues. In this study, we report that bone marrow-derived macrophages (BMDM) from BALB/c mice lack constitutive expression of any of the six murine ecto-ART subtypes, but selectively up-regulate ART2.1 in response to multiple proinflammatory mediators including agonists for TLR and type I and type II IFN. Stimulation of BMDM with LPS, IFN-beta, or IFN-gamma induced high expression of ART2.1, but not ART2.2, as a GPI-anchored cell surface ectoenzyme. ART2.1 expression in response to LPS was potentiated by inhibition of ERK1/2 signaling, but inhibited by blockade of the NF-kappaB, PI3K, and JAK-STAT pathways or the presence of neutralizing anti-IFN-beta. The catalytic function of the induced cell surface ART2.1 was strictly dependent on the presence of extracellular thiol-reducing cofactors, suggesting that in vivo activity of ART2.1-expressing macrophages may be potentiated in hypoxic or ischemic compartments. Consistent with the mutated art2a gene in C57BL/6 mice, LPS- or IFN-stimulated BMDM from this strain lacked expression of cell surface ART2 activity in the presence or absence of extracellular thiol reductants. Collectively, these studies identify ART2.1 as a new candidate for linking autocrine/paracrine activation of inflammatory macrophages to the release of NAD, a critical intracellular metabolite.

M3 - SCORING: Zeitschriftenaufsatz

VL - 179

SP - 6215

EP - 6227

JO - J IMMUNOL

JF - J IMMUNOL

SN - 0022-1767

IS - 9

M1 - 9

ER -