Inhibition of Small Conductance Calcium-Activated Potassium (SK) Channels Prevents Arrhythmias in Rat Atria During β-Adrenergic and Muscarinic Receptor Activation

Standard

Inhibition of Small Conductance Calcium-Activated Potassium (SK) Channels Prevents Arrhythmias in Rat Atria During β-Adrenergic and Muscarinic Receptor Activation. / Skibsbye, Lasse; Bengaard, Anne K; Uldum-Nielsen, A M; Boddum, Kim; Christ, Torsten; Jespersen, Thomas.

In: FRONT PHYSIOL, Vol. 9, 2018, p. 510.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{24a4de0d4fa84b93b4f48365819d3241,
title = "Inhibition of Small Conductance Calcium-Activated Potassium (SK) Channels Prevents Arrhythmias in Rat Atria During β-Adrenergic and Muscarinic Receptor Activation",
abstract = "Sympathetic and vagal activation is linked to atrial arrhythmogenesis. Here we investigated the small conductance Ca2+-activated K+ (SK)-channel pore-blocker N-(pyridin-2-yl)-4-(pyridine-2-yl)thiazol-2-amine (ICA) on action potential (AP) and atrial fibrillation (AF) parameters in isolated rat atria during β-adrenergic [isoprenaline (ISO)] and muscarinic M2 [carbachol (CCh)] activation. Furthermore, antiarrhythmic efficacy of ICA was benchmarked toward the class-IC antiarrhythmic drug flecainide (Fleca). ISO increased the spontaneous beating frequency but did not affect other AP parameters. As expected, CCh hyperpolarized resting membrane potential (-6.2 ± 0.9 mV), shortened APD90 (24.2 ± 1.6 vs. 17.7 ± 1.1 ms), and effective refractory period (ERP; 20.0 ± 1.3 vs. 15.8 ± 1.3 ms). The duration of burst pacing triggered AF was unchanged in the presence of CCh compared to control atria (12.8 ± 5.3 vs. 11.2 ± 3.6 s), while β-adrenergic activation resulted in shorter AF durations (3.3 ± 1.7 s) and lower AF-frequency compared to CCh. Treatment with ICA (10 μM) in ISO -stimulated atria prolonged APD90 and ERP, while the AF burden was reduced (7.1 ± 5.5 vs. 0.1 ± 0.1 s). In CCh-stimulated atria, ICA treatment also resulted in APD90 and ERP prolongation and shorter AF durations. Fleca treatment in CCh-stimulated atria prolonged APD90 and ERP and abbreviated the AF duration to a similar extent as with ICA. Muscarinic activated atria constitutes a more arrhythmogenic substrate than β-adrenoceptor activated atria. Pharmacological inhibition of SK channels by ICA is effective under both conditions and equally efficacious to Fleca.",
keywords = "Journal Article",
author = "Lasse Skibsbye and Bengaard, {Anne K} and Uldum-Nielsen, {A M} and Kim Boddum and Torsten Christ and Thomas Jespersen",
year = "2018",
doi = "10.3389/fphys.2018.00510",
language = "English",
volume = "9",
pages = "510",
journal = "FRONT PHYSIOL",
issn = "1664-042X",
publisher = "Frontiers Research Foundation",

}

RIS

TY - JOUR

T1 - Inhibition of Small Conductance Calcium-Activated Potassium (SK) Channels Prevents Arrhythmias in Rat Atria During β-Adrenergic and Muscarinic Receptor Activation

AU - Skibsbye, Lasse

AU - Bengaard, Anne K

AU - Uldum-Nielsen, A M

AU - Boddum, Kim

AU - Christ, Torsten

AU - Jespersen, Thomas

PY - 2018

Y1 - 2018

N2 - Sympathetic and vagal activation is linked to atrial arrhythmogenesis. Here we investigated the small conductance Ca2+-activated K+ (SK)-channel pore-blocker N-(pyridin-2-yl)-4-(pyridine-2-yl)thiazol-2-amine (ICA) on action potential (AP) and atrial fibrillation (AF) parameters in isolated rat atria during β-adrenergic [isoprenaline (ISO)] and muscarinic M2 [carbachol (CCh)] activation. Furthermore, antiarrhythmic efficacy of ICA was benchmarked toward the class-IC antiarrhythmic drug flecainide (Fleca). ISO increased the spontaneous beating frequency but did not affect other AP parameters. As expected, CCh hyperpolarized resting membrane potential (-6.2 ± 0.9 mV), shortened APD90 (24.2 ± 1.6 vs. 17.7 ± 1.1 ms), and effective refractory period (ERP; 20.0 ± 1.3 vs. 15.8 ± 1.3 ms). The duration of burst pacing triggered AF was unchanged in the presence of CCh compared to control atria (12.8 ± 5.3 vs. 11.2 ± 3.6 s), while β-adrenergic activation resulted in shorter AF durations (3.3 ± 1.7 s) and lower AF-frequency compared to CCh. Treatment with ICA (10 μM) in ISO -stimulated atria prolonged APD90 and ERP, while the AF burden was reduced (7.1 ± 5.5 vs. 0.1 ± 0.1 s). In CCh-stimulated atria, ICA treatment also resulted in APD90 and ERP prolongation and shorter AF durations. Fleca treatment in CCh-stimulated atria prolonged APD90 and ERP and abbreviated the AF duration to a similar extent as with ICA. Muscarinic activated atria constitutes a more arrhythmogenic substrate than β-adrenoceptor activated atria. Pharmacological inhibition of SK channels by ICA is effective under both conditions and equally efficacious to Fleca.

AB - Sympathetic and vagal activation is linked to atrial arrhythmogenesis. Here we investigated the small conductance Ca2+-activated K+ (SK)-channel pore-blocker N-(pyridin-2-yl)-4-(pyridine-2-yl)thiazol-2-amine (ICA) on action potential (AP) and atrial fibrillation (AF) parameters in isolated rat atria during β-adrenergic [isoprenaline (ISO)] and muscarinic M2 [carbachol (CCh)] activation. Furthermore, antiarrhythmic efficacy of ICA was benchmarked toward the class-IC antiarrhythmic drug flecainide (Fleca). ISO increased the spontaneous beating frequency but did not affect other AP parameters. As expected, CCh hyperpolarized resting membrane potential (-6.2 ± 0.9 mV), shortened APD90 (24.2 ± 1.6 vs. 17.7 ± 1.1 ms), and effective refractory period (ERP; 20.0 ± 1.3 vs. 15.8 ± 1.3 ms). The duration of burst pacing triggered AF was unchanged in the presence of CCh compared to control atria (12.8 ± 5.3 vs. 11.2 ± 3.6 s), while β-adrenergic activation resulted in shorter AF durations (3.3 ± 1.7 s) and lower AF-frequency compared to CCh. Treatment with ICA (10 μM) in ISO -stimulated atria prolonged APD90 and ERP, while the AF burden was reduced (7.1 ± 5.5 vs. 0.1 ± 0.1 s). In CCh-stimulated atria, ICA treatment also resulted in APD90 and ERP prolongation and shorter AF durations. Fleca treatment in CCh-stimulated atria prolonged APD90 and ERP and abbreviated the AF duration to a similar extent as with ICA. Muscarinic activated atria constitutes a more arrhythmogenic substrate than β-adrenoceptor activated atria. Pharmacological inhibition of SK channels by ICA is effective under both conditions and equally efficacious to Fleca.

KW - Journal Article

U2 - 10.3389/fphys.2018.00510

DO - 10.3389/fphys.2018.00510

M3 - SCORING: Journal article

C2 - 29922167

VL - 9

SP - 510

JO - FRONT PHYSIOL

JF - FRONT PHYSIOL

SN - 1664-042X

ER -