Increase of c-FOS promoter transcriptional activity by the dual leucine zipper kinase

Standard

Increase of c-FOS promoter transcriptional activity by the dual leucine zipper kinase. / Köster, Kyra-Alexandra; Duque Escobar, Jorge; Fietkau, Anja; Toledo, Regina; Oetjen, Elke.

In: N-S ARCH PHARMACOL, Vol. 396, No. 6, 06.2023, p. 1223-1233.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{aa8d8d91c2a14eabb9081c423197b060,
title = "Increase of c-FOS promoter transcriptional activity by the dual leucine zipper kinase",
abstract = "The dual leucine zipper kinase (DLK) and the ubiquitously expressed transcription factor c-FOS have important roles in beta-cell proliferation and function. Some studies in neuronal cells suggest that DLK can influence c-FOS expression. Given that c-FOS is mainly regulated at the transcriptional level, the effect of DLK on c-FOS promoter activity was investigated in the beta-cell line HIT. The methods used in this study are the following: Luciferase reporter gene assays, immunoblot analysis, CRISPR-Cas9-mediated genome editing, and real-time quantitative PCR. In the beta-cell line HIT, overexpressed DLK increased c-FOS promoter activity twofold. Using 5'-,3'-promoter deletions, the promoter regions from - 348 to - 339 base pairs (bp) and from a - 284 to - 53 bp conferred basal activity, whereas the promoter region from - 711 to - 348 bp and from - 53 to + 48 bp mediated DLK responsiveness. Mutation of the cAMP response element within the promoter prevented the stimulatory effect of DLK. Treatment of HIT cells with KCl and the adenylate cyclase activator forskolin increased c-FOS promoter transcriptional activity ninefold. Since the transcriptional activity of those promoter fragments activated by KCl and forskolin was decreased by DLK, DLK might interfere with KCl/forskolin-induced signaling. In a newly generated, genome-edited HIT cell line lacking catalytically active DLK, c-Fos mRNA levels were reduced by 80% compared to the wild-type cell line. DLK increased c-FOS promoter activity but decreased stimulated transcriptional activity, suggesting that DLK fine-tunes c-FOS promoter-dependent gene transcription. Moreover, at least in HIT cells, DLK is required for FOS mRNA expression.",
author = "Kyra-Alexandra K{\"o}ster and {Duque Escobar}, Jorge and Anja Fietkau and Regina Toledo and Elke Oetjen",
note = "{\textcopyright} 2023. The Author(s).",
year = "2023",
month = jun,
doi = "10.1007/s00210-023-02401-z",
language = "English",
volume = "396",
pages = "1223--1233",
journal = "N-S ARCH PHARMACOL",
issn = "0028-1298",
publisher = "Springer",
number = "6",

}

RIS

TY - JOUR

T1 - Increase of c-FOS promoter transcriptional activity by the dual leucine zipper kinase

AU - Köster, Kyra-Alexandra

AU - Duque Escobar, Jorge

AU - Fietkau, Anja

AU - Toledo, Regina

AU - Oetjen, Elke

N1 - © 2023. The Author(s).

PY - 2023/6

Y1 - 2023/6

N2 - The dual leucine zipper kinase (DLK) and the ubiquitously expressed transcription factor c-FOS have important roles in beta-cell proliferation and function. Some studies in neuronal cells suggest that DLK can influence c-FOS expression. Given that c-FOS is mainly regulated at the transcriptional level, the effect of DLK on c-FOS promoter activity was investigated in the beta-cell line HIT. The methods used in this study are the following: Luciferase reporter gene assays, immunoblot analysis, CRISPR-Cas9-mediated genome editing, and real-time quantitative PCR. In the beta-cell line HIT, overexpressed DLK increased c-FOS promoter activity twofold. Using 5'-,3'-promoter deletions, the promoter regions from - 348 to - 339 base pairs (bp) and from a - 284 to - 53 bp conferred basal activity, whereas the promoter region from - 711 to - 348 bp and from - 53 to + 48 bp mediated DLK responsiveness. Mutation of the cAMP response element within the promoter prevented the stimulatory effect of DLK. Treatment of HIT cells with KCl and the adenylate cyclase activator forskolin increased c-FOS promoter transcriptional activity ninefold. Since the transcriptional activity of those promoter fragments activated by KCl and forskolin was decreased by DLK, DLK might interfere with KCl/forskolin-induced signaling. In a newly generated, genome-edited HIT cell line lacking catalytically active DLK, c-Fos mRNA levels were reduced by 80% compared to the wild-type cell line. DLK increased c-FOS promoter activity but decreased stimulated transcriptional activity, suggesting that DLK fine-tunes c-FOS promoter-dependent gene transcription. Moreover, at least in HIT cells, DLK is required for FOS mRNA expression.

AB - The dual leucine zipper kinase (DLK) and the ubiquitously expressed transcription factor c-FOS have important roles in beta-cell proliferation and function. Some studies in neuronal cells suggest that DLK can influence c-FOS expression. Given that c-FOS is mainly regulated at the transcriptional level, the effect of DLK on c-FOS promoter activity was investigated in the beta-cell line HIT. The methods used in this study are the following: Luciferase reporter gene assays, immunoblot analysis, CRISPR-Cas9-mediated genome editing, and real-time quantitative PCR. In the beta-cell line HIT, overexpressed DLK increased c-FOS promoter activity twofold. Using 5'-,3'-promoter deletions, the promoter regions from - 348 to - 339 base pairs (bp) and from a - 284 to - 53 bp conferred basal activity, whereas the promoter region from - 711 to - 348 bp and from - 53 to + 48 bp mediated DLK responsiveness. Mutation of the cAMP response element within the promoter prevented the stimulatory effect of DLK. Treatment of HIT cells with KCl and the adenylate cyclase activator forskolin increased c-FOS promoter transcriptional activity ninefold. Since the transcriptional activity of those promoter fragments activated by KCl and forskolin was decreased by DLK, DLK might interfere with KCl/forskolin-induced signaling. In a newly generated, genome-edited HIT cell line lacking catalytically active DLK, c-Fos mRNA levels were reduced by 80% compared to the wild-type cell line. DLK increased c-FOS promoter activity but decreased stimulated transcriptional activity, suggesting that DLK fine-tunes c-FOS promoter-dependent gene transcription. Moreover, at least in HIT cells, DLK is required for FOS mRNA expression.

U2 - 10.1007/s00210-023-02401-z

DO - 10.1007/s00210-023-02401-z

M3 - SCORING: Journal article

C2 - 36700987

VL - 396

SP - 1223

EP - 1233

JO - N-S ARCH PHARMACOL

JF - N-S ARCH PHARMACOL

SN - 0028-1298

IS - 6

ER -