Impaired complex I repair causes recessive Leber's hereditary optic neuropathy

  • Sarah L Stenton
  • Natalia L Sheremet
  • Claudia B Catarino
  • Natalia A Andreeva
  • Zahra Assouline
  • Piero Barboni
  • Ortal Barel
  • Riccardo Berutti
  • Igor Bychkov
  • Leonardo Caporali
  • Mariantonietta Capristo
  • Michele Carbonelli
  • Maria L Cascavilla
  • Peter Charbel Issa
  • Peter Freisinger
  • Sylvie Gerber
  • Daniele Ghezzi
  • Elisabeth Graf
  • Juliana Heidler
  • Maja Hempel
  • Elise Heon
  • Yulya S Itkis
  • Elisheva Javasky
  • Josseline Kaplan
  • Robert Kopajtich
  • Cornelia Kornblum
  • Reka Kovacs-Nagy
  • Tatiana D Krylova
  • Wolfram S Kunz
  • Chiara La Morgia
  • Costanza Lamperti
  • Christina Ludwig
  • Pedro F Malacarne
  • Alessandra Maresca
  • Johannes A Mayr
  • Jana Meisterknecht
  • Tatiana A Nevinitsyna
  • Flavia Palombo
  • Ben Pode-Shakked
  • Maria S Shmelkova
  • Tim M Strom
  • Francesca Tagliavini
  • Michal Tzadok
  • Amelie T van der Ven
  • Catherine Vignal-Clermont
  • Matias Wagner
  • Ekaterina Y Zakharova
  • Nino V Zhorzholadze
  • Jean-Michel Rozet
  • Valerio Carelli
  • Polina G Tsygankova
  • Thomas Klopstock
  • Ilka Wittig
  • Holger Prokisch

Related Research units

Abstract

Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits.

Bibliographical data

Original languageEnglish
Article numbere138267
ISSN0021-9738
DOIs
Publication statusPublished - 15.03.2021
PubMed 33465056