Identification and quantification of diadenosine polyphosphate concentrations in human plasma

Standard

Identification and quantification of diadenosine polyphosphate concentrations in human plasma. / Jankowski, Joachim; Jankowski, Vera; Laufer, Udo; van der Giet, Markus; Henning, Lars; Tepel, Martin; Zidek, Walter; Schlüter, Hartmut.

In: ARTERIOSCL THROM VAS, Vol. 23, No. 7, 01.07.2003, p. 1231-8.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

Jankowski, J, Jankowski, V, Laufer, U, van der Giet, M, Henning, L, Tepel, M, Zidek, W & Schlüter, H 2003, 'Identification and quantification of diadenosine polyphosphate concentrations in human plasma', ARTERIOSCL THROM VAS, vol. 23, no. 7, pp. 1231-8. https://doi.org/10.1161/01.ATV.0000075913.00428.FD

APA

Jankowski, J., Jankowski, V., Laufer, U., van der Giet, M., Henning, L., Tepel, M., Zidek, W., & Schlüter, H. (2003). Identification and quantification of diadenosine polyphosphate concentrations in human plasma. ARTERIOSCL THROM VAS, 23(7), 1231-8. https://doi.org/10.1161/01.ATV.0000075913.00428.FD

Vancouver

Bibtex

@article{f26b804eb74d43c9a73a705aa61ce527,
title = "Identification and quantification of diadenosine polyphosphate concentrations in human plasma",
abstract = "OBJECTIVE: Diadenosine polyphosphates have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. In this study we investigated the question of whether diadenosine polyphosphates are present in human plasma and whether a potential source can be identified that may release diadenosine polyphosphates into the circulation.METHODS AND RESULTS: Plasma diadenosine polyphosphates (ApnA with n=3 to 6) were purified to homogeneity by affinity-, anion exchange-, and reversed phase-chromatography from deproteinized human plasma. Analysis of the homogeneous fractions with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) revealed molecular masses ([M+H]+) of 757, 837, 917, and 997 d. Comparison of the postsource decay matrix-assisted laser desorption/ionization mass spectrometry mass spectra of these fractions with those of authentic diadenosine polyphosphates revealed that these isolated substances were identical to Ap3A, Ap4A, Ap5A, and Ap6A. Enzymatic analysis showed an interconnection of the phosphate groups with the adenosines in the 5'-positions of the ribose moieties. The mean total plasma diadenosine polyphosphate concentrations (micromol/L; mean +/- SEM) in cubital veins of normotensive subjects amounted to 0.89+/-0.59 for Ap3A, 0.72+/-0.72 for Ap4A, 0.33+/-0.24 for Ap5A, and 0.18+/-0.18 for Ap6A. Cubital venous plasma diadenosine polyphosphate concentrations from normotensives did not differ significantly from those in the hypertensive patients studied. There was no significant difference between arterial and venous diadenosine polyphosphate plasma concentrations in 5 hemodialysis patients, making a significant degradation by capillary endothelial cells unlikely. Free plasma diadenosine polyphosphate concentrations are considerably lower than total plasma concentrations because approximately 95% of the plasma diadenosine polyphosphates were bound to proteins. There were no significant differences in the diadenosine polyphosphate plasma concentrations depending on the method of blood sampling and anticoagulation, suggesting that platelet aggregation does not artificially contribute to plasma diadenosine polyphosphate levels in significant amounts. The ApnA (with n=3 to 6) total plasma concentrations in adrenal veins were significantly higher than the plasma concentrations in both infrarenal and suprarenal vena cava: adrenal veins: Ap3A, 4.05+/-1.63; Ap4A, 6.18+/-2.08; Ap5A, 0.53+/-0.28; Ap6A, 0.59+/-0.31; infrarenal vena cava: Ap3A, 1.25+/-0.66; Ap4A, 0.91+/-0.54; Ap5A, 0.25+/-0.12; Ap6A, 0.11+/-0.06; suprarenal vena cava: Ap3A, 1.40+/-0.91; Ap4A, 1.84+/-1.20; Ap5A, 0.33+/-0.13; Ap6A, 0.11+/-0.07 (micromol/L; mean +/- SEM; each P<0.05 (concentration of adrenal veins versus infrarenal or suprarenal veins, respectively).CONCLUSIONS: The presence of diadenosine polyphosphates in physiologically relevant concentrations in human plasma was demonstrated. Because in adrenal venous plasma significantly higher diadenosine polyphosphate concentrations were measured than in plasma from the infrarenal and suprarenal vena cava, it can be assumed that, beside platelets, the adrenal medulla may be a source of plasma diadenosine polyphosphates in humans.",
keywords = "Chromatography, High Pressure Liquid, Dinucleoside Phosphates, Female, Humans, Male, Middle Aged, Polyphosphates, Probability, Reproducibility of Results, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Journal Article, Research Support, Non-U.S. Gov't",
author = "Joachim Jankowski and Vera Jankowski and Udo Laufer and {van der Giet}, Markus and Lars Henning and Martin Tepel and Walter Zidek and Hartmut Schl{\"u}ter",
year = "2003",
month = jul,
day = "1",
doi = "10.1161/01.ATV.0000075913.00428.FD",
language = "English",
volume = "23",
pages = "1231--8",
journal = "ARTERIOSCL THROM VAS",
issn = "1079-5642",
publisher = "Lippincott Williams and Wilkins",
number = "7",

}

RIS

TY - JOUR

T1 - Identification and quantification of diadenosine polyphosphate concentrations in human plasma

AU - Jankowski, Joachim

AU - Jankowski, Vera

AU - Laufer, Udo

AU - van der Giet, Markus

AU - Henning, Lars

AU - Tepel, Martin

AU - Zidek, Walter

AU - Schlüter, Hartmut

PY - 2003/7/1

Y1 - 2003/7/1

N2 - OBJECTIVE: Diadenosine polyphosphates have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. In this study we investigated the question of whether diadenosine polyphosphates are present in human plasma and whether a potential source can be identified that may release diadenosine polyphosphates into the circulation.METHODS AND RESULTS: Plasma diadenosine polyphosphates (ApnA with n=3 to 6) were purified to homogeneity by affinity-, anion exchange-, and reversed phase-chromatography from deproteinized human plasma. Analysis of the homogeneous fractions with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) revealed molecular masses ([M+H]+) of 757, 837, 917, and 997 d. Comparison of the postsource decay matrix-assisted laser desorption/ionization mass spectrometry mass spectra of these fractions with those of authentic diadenosine polyphosphates revealed that these isolated substances were identical to Ap3A, Ap4A, Ap5A, and Ap6A. Enzymatic analysis showed an interconnection of the phosphate groups with the adenosines in the 5'-positions of the ribose moieties. The mean total plasma diadenosine polyphosphate concentrations (micromol/L; mean +/- SEM) in cubital veins of normotensive subjects amounted to 0.89+/-0.59 for Ap3A, 0.72+/-0.72 for Ap4A, 0.33+/-0.24 for Ap5A, and 0.18+/-0.18 for Ap6A. Cubital venous plasma diadenosine polyphosphate concentrations from normotensives did not differ significantly from those in the hypertensive patients studied. There was no significant difference between arterial and venous diadenosine polyphosphate plasma concentrations in 5 hemodialysis patients, making a significant degradation by capillary endothelial cells unlikely. Free plasma diadenosine polyphosphate concentrations are considerably lower than total plasma concentrations because approximately 95% of the plasma diadenosine polyphosphates were bound to proteins. There were no significant differences in the diadenosine polyphosphate plasma concentrations depending on the method of blood sampling and anticoagulation, suggesting that platelet aggregation does not artificially contribute to plasma diadenosine polyphosphate levels in significant amounts. The ApnA (with n=3 to 6) total plasma concentrations in adrenal veins were significantly higher than the plasma concentrations in both infrarenal and suprarenal vena cava: adrenal veins: Ap3A, 4.05+/-1.63; Ap4A, 6.18+/-2.08; Ap5A, 0.53+/-0.28; Ap6A, 0.59+/-0.31; infrarenal vena cava: Ap3A, 1.25+/-0.66; Ap4A, 0.91+/-0.54; Ap5A, 0.25+/-0.12; Ap6A, 0.11+/-0.06; suprarenal vena cava: Ap3A, 1.40+/-0.91; Ap4A, 1.84+/-1.20; Ap5A, 0.33+/-0.13; Ap6A, 0.11+/-0.07 (micromol/L; mean +/- SEM; each P<0.05 (concentration of adrenal veins versus infrarenal or suprarenal veins, respectively).CONCLUSIONS: The presence of diadenosine polyphosphates in physiologically relevant concentrations in human plasma was demonstrated. Because in adrenal venous plasma significantly higher diadenosine polyphosphate concentrations were measured than in plasma from the infrarenal and suprarenal vena cava, it can be assumed that, beside platelets, the adrenal medulla may be a source of plasma diadenosine polyphosphates in humans.

AB - OBJECTIVE: Diadenosine polyphosphates have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. In this study we investigated the question of whether diadenosine polyphosphates are present in human plasma and whether a potential source can be identified that may release diadenosine polyphosphates into the circulation.METHODS AND RESULTS: Plasma diadenosine polyphosphates (ApnA with n=3 to 6) were purified to homogeneity by affinity-, anion exchange-, and reversed phase-chromatography from deproteinized human plasma. Analysis of the homogeneous fractions with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) revealed molecular masses ([M+H]+) of 757, 837, 917, and 997 d. Comparison of the postsource decay matrix-assisted laser desorption/ionization mass spectrometry mass spectra of these fractions with those of authentic diadenosine polyphosphates revealed that these isolated substances were identical to Ap3A, Ap4A, Ap5A, and Ap6A. Enzymatic analysis showed an interconnection of the phosphate groups with the adenosines in the 5'-positions of the ribose moieties. The mean total plasma diadenosine polyphosphate concentrations (micromol/L; mean +/- SEM) in cubital veins of normotensive subjects amounted to 0.89+/-0.59 for Ap3A, 0.72+/-0.72 for Ap4A, 0.33+/-0.24 for Ap5A, and 0.18+/-0.18 for Ap6A. Cubital venous plasma diadenosine polyphosphate concentrations from normotensives did not differ significantly from those in the hypertensive patients studied. There was no significant difference between arterial and venous diadenosine polyphosphate plasma concentrations in 5 hemodialysis patients, making a significant degradation by capillary endothelial cells unlikely. Free plasma diadenosine polyphosphate concentrations are considerably lower than total plasma concentrations because approximately 95% of the plasma diadenosine polyphosphates were bound to proteins. There were no significant differences in the diadenosine polyphosphate plasma concentrations depending on the method of blood sampling and anticoagulation, suggesting that platelet aggregation does not artificially contribute to plasma diadenosine polyphosphate levels in significant amounts. The ApnA (with n=3 to 6) total plasma concentrations in adrenal veins were significantly higher than the plasma concentrations in both infrarenal and suprarenal vena cava: adrenal veins: Ap3A, 4.05+/-1.63; Ap4A, 6.18+/-2.08; Ap5A, 0.53+/-0.28; Ap6A, 0.59+/-0.31; infrarenal vena cava: Ap3A, 1.25+/-0.66; Ap4A, 0.91+/-0.54; Ap5A, 0.25+/-0.12; Ap6A, 0.11+/-0.06; suprarenal vena cava: Ap3A, 1.40+/-0.91; Ap4A, 1.84+/-1.20; Ap5A, 0.33+/-0.13; Ap6A, 0.11+/-0.07 (micromol/L; mean +/- SEM; each P<0.05 (concentration of adrenal veins versus infrarenal or suprarenal veins, respectively).CONCLUSIONS: The presence of diadenosine polyphosphates in physiologically relevant concentrations in human plasma was demonstrated. Because in adrenal venous plasma significantly higher diadenosine polyphosphate concentrations were measured than in plasma from the infrarenal and suprarenal vena cava, it can be assumed that, beside platelets, the adrenal medulla may be a source of plasma diadenosine polyphosphates in humans.

KW - Chromatography, High Pressure Liquid

KW - Dinucleoside Phosphates

KW - Female

KW - Humans

KW - Male

KW - Middle Aged

KW - Polyphosphates

KW - Probability

KW - Reproducibility of Results

KW - Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

KW - Journal Article

KW - Research Support, Non-U.S. Gov't

U2 - 10.1161/01.ATV.0000075913.00428.FD

DO - 10.1161/01.ATV.0000075913.00428.FD

M3 - SCORING: Journal article

C2 - 12738682

VL - 23

SP - 1231

EP - 1238

JO - ARTERIOSCL THROM VAS

JF - ARTERIOSCL THROM VAS

SN - 1079-5642

IS - 7

ER -