Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition

Standard

Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition. / Liffers, Katrin; Kolbe, Katharina; Westphal, Manfred; Lamszus, Katrin; Schulte, Alexander.

In: TARGET ONCOL, Vol. 11, No. 1, 01.02.2016, p. 29-40.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{6fcfec83ef08465ebedbfe8d0d531bef,
title = "Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition",
abstract = "Although the epidermal growth factor receptor (EGFR) is overexpressed and/or amplified in more than 50 % of all glioblastomas (GBM), therapeutic targeting of the EGFR has not yet been successful. Since histone deacetylases (HDAC) have been described as controlling EGFR expression, we combined the EGFR tyrosine kinase inhibitor erlotinib with different HDAC inhibitors (HDACi) and investigated the benefit of combinatorial therapy for glioblastoma cells. Using representative models of EGFR-amplified, erlotinib-sensitive and -resistant GBM with or without EGFRvIII expression, we determined proliferation, migration, and EGFR-dependent signaling in response to erlotinib and HDACi alone or in combination. HDACi significantly inhibited proliferation of erlotinib-resistant GBM cells, partially restored their sensitivity to erlotinib, and also significantly reduced proliferation of all treatment-na{\"i}ve cell lines tested. In combination with erlotinib, the development of resistance was prevented. The multitargeted EGFR/HDAC-inhibitor CUDC-101 exhibited similar effects. However, inhibition of cell migration was only achieved by targeting EGFR, and HDACi exhibited no additive effect. Mechanistically, we identified an HDACi-dependent decrease of EGFR/EGFRvIII protein expression underlying the anti-proliferative effects of HDACi. In conclusion, HDACi in combination with erlotinib might serve as a treatment option for newly diagnosed, treatment-na{\"i}ve tumors irrespective of their EGFR status, as well as for treatment-refractory, EGFR-overexpressing GBM.",
author = "Katrin Liffers and Katharina Kolbe and Manfred Westphal and Katrin Lamszus and Alexander Schulte",
note = "Epub ahead of print",
year = "2016",
month = feb,
day = "1",
doi = "10.1007/s11523-015-0372-y",
language = "English",
volume = "11",
pages = "29--40",
journal = "TARGET ONCOL",
issn = "1776-2596",
publisher = "Springer Paris",
number = "1",

}

RIS

TY - JOUR

T1 - Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition

AU - Liffers, Katrin

AU - Kolbe, Katharina

AU - Westphal, Manfred

AU - Lamszus, Katrin

AU - Schulte, Alexander

N1 - Epub ahead of print

PY - 2016/2/1

Y1 - 2016/2/1

N2 - Although the epidermal growth factor receptor (EGFR) is overexpressed and/or amplified in more than 50 % of all glioblastomas (GBM), therapeutic targeting of the EGFR has not yet been successful. Since histone deacetylases (HDAC) have been described as controlling EGFR expression, we combined the EGFR tyrosine kinase inhibitor erlotinib with different HDAC inhibitors (HDACi) and investigated the benefit of combinatorial therapy for glioblastoma cells. Using representative models of EGFR-amplified, erlotinib-sensitive and -resistant GBM with or without EGFRvIII expression, we determined proliferation, migration, and EGFR-dependent signaling in response to erlotinib and HDACi alone or in combination. HDACi significantly inhibited proliferation of erlotinib-resistant GBM cells, partially restored their sensitivity to erlotinib, and also significantly reduced proliferation of all treatment-naïve cell lines tested. In combination with erlotinib, the development of resistance was prevented. The multitargeted EGFR/HDAC-inhibitor CUDC-101 exhibited similar effects. However, inhibition of cell migration was only achieved by targeting EGFR, and HDACi exhibited no additive effect. Mechanistically, we identified an HDACi-dependent decrease of EGFR/EGFRvIII protein expression underlying the anti-proliferative effects of HDACi. In conclusion, HDACi in combination with erlotinib might serve as a treatment option for newly diagnosed, treatment-naïve tumors irrespective of their EGFR status, as well as for treatment-refractory, EGFR-overexpressing GBM.

AB - Although the epidermal growth factor receptor (EGFR) is overexpressed and/or amplified in more than 50 % of all glioblastomas (GBM), therapeutic targeting of the EGFR has not yet been successful. Since histone deacetylases (HDAC) have been described as controlling EGFR expression, we combined the EGFR tyrosine kinase inhibitor erlotinib with different HDAC inhibitors (HDACi) and investigated the benefit of combinatorial therapy for glioblastoma cells. Using representative models of EGFR-amplified, erlotinib-sensitive and -resistant GBM with or without EGFRvIII expression, we determined proliferation, migration, and EGFR-dependent signaling in response to erlotinib and HDACi alone or in combination. HDACi significantly inhibited proliferation of erlotinib-resistant GBM cells, partially restored their sensitivity to erlotinib, and also significantly reduced proliferation of all treatment-naïve cell lines tested. In combination with erlotinib, the development of resistance was prevented. The multitargeted EGFR/HDAC-inhibitor CUDC-101 exhibited similar effects. However, inhibition of cell migration was only achieved by targeting EGFR, and HDACi exhibited no additive effect. Mechanistically, we identified an HDACi-dependent decrease of EGFR/EGFRvIII protein expression underlying the anti-proliferative effects of HDACi. In conclusion, HDACi in combination with erlotinib might serve as a treatment option for newly diagnosed, treatment-naïve tumors irrespective of their EGFR status, as well as for treatment-refractory, EGFR-overexpressing GBM.

U2 - 10.1007/s11523-015-0372-y

DO - 10.1007/s11523-015-0372-y

M3 - SCORING: Journal article

C2 - 26032687

VL - 11

SP - 29

EP - 40

JO - TARGET ONCOL

JF - TARGET ONCOL

SN - 1776-2596

IS - 1

ER -