Gradient-echo line scan imaging using 2D-selective RF excitation.

Related Research units

Abstract

A gradient-echo line scan imaging technique was developed which employs two-dimensional spatially selective radiofrequency (2DRF) pulses for consecutively exciting individual columns of transverse magnetization, i.e., image lines. Although a variety of trajectories are possible for 2DRF excitation, the current implementation involved a blipped-planar trajectory in conjunction with additional saturation RF pulses to suppress side excitations above and below the desired image section, i.e., along the blip direction of the 2DRF pulse. Human brain imaging at 2.0 T (Siemens Vision, Erlangen, Germany) resulted in measuring times of 5.2 s for a 5-mm section at 1.0 x 1.0 mm in-plane resolution. Functional neuroimaging of the motor cortex at 1.2 s temporal resolution and 0.78 x 1.56 mm in-plane resolution exploited the capability of imaging inner volumes (here a 25-mm strip) without signal aliasing.

Bibliographical data

Original languageGerman
Article number1
ISSN1090-7807
Publication statusPublished - 2000
pubmed 11042043