Generation and Function of Non-cell-bound CD73 in Inflammation

Standard

Generation and Function of Non-cell-bound CD73 in Inflammation. / Schneider, Enja; Rissiek, Anne; Winzer, Riekje; Puig, Berta; Rissiek, Björn; Haag, Friedrich; Mittrücker, Hans-Willi; Magnus, Tim; Tolosa, Eva.

In: FRONT IMMUNOL, Vol. 10, 2019, p. 1729.

Research output: SCORING: Contribution to journalSCORING: Review articleResearch

Harvard

APA

Vancouver

Bibtex

@article{ea4b4b79c98145b3b70327909754fecd,
title = "Generation and Function of Non-cell-bound CD73 in Inflammation",
abstract = "Extracellular adenine nucleotides participate in cell-to-cell communication and modulate the immune response. The concerted action of ectonucleotidases CD39 and CD73 plays a major role in the local production of anti-inflammatory adenosine, but both ectonucleotidases are rarely co-expressed by human T cells. The expression of CD39 on T cells increases upon T cell activation and is high at sites of inflammation. CD73, in contrast, disappears from the cellular membrane after activation. The possibility that CD73 could act in trans would resolve the conundrum of both enzymes being co-expressed for the degradation of ATP and the generation of adenosine. An enzymatically active soluble form of CD73 has been reported, and AMPase activity has been detected in body fluids of patients with inflammation and cancer. It is not yet clear how CD73, a glycosylphosphatidylinositol (GPI)-anchored protein, is released from the cell membrane, but plausible mechanisms include cleavage by metalloproteinases and shedding mediated by cell-associated phospholipases. Importantly, like many other GPI-anchored proteins, CD73 at the cell membrane is preferentially localized in detergent-resistant domains or lipid rafts, which often contribute to extracellular vesicles (EVs). Indeed, CD73-containing vesicles of different size and origin and with immunomodulatory function have been found in the tumor microenvironment. The occurrence of CD73 as non-cell-bound molecule widens the range of action of this enzyme at sites of inflammation. In this review, we will discuss the generation of non-cell-bound CD73 and its physiological role in inflammation.",
author = "Enja Schneider and Anne Rissiek and Riekje Winzer and Berta Puig and Bj{\"o}rn Rissiek and Friedrich Haag and Hans-Willi Mittr{\"u}cker and Tim Magnus and Eva Tolosa",
year = "2019",
doi = "10.3389/fimmu.2019.01729",
language = "English",
volume = "10",
pages = "1729",
journal = "FRONT IMMUNOL",
issn = "1664-3224",
publisher = "Lausanne : Frontiers Research Foundation",

}

RIS

TY - JOUR

T1 - Generation and Function of Non-cell-bound CD73 in Inflammation

AU - Schneider, Enja

AU - Rissiek, Anne

AU - Winzer, Riekje

AU - Puig, Berta

AU - Rissiek, Björn

AU - Haag, Friedrich

AU - Mittrücker, Hans-Willi

AU - Magnus, Tim

AU - Tolosa, Eva

PY - 2019

Y1 - 2019

N2 - Extracellular adenine nucleotides participate in cell-to-cell communication and modulate the immune response. The concerted action of ectonucleotidases CD39 and CD73 plays a major role in the local production of anti-inflammatory adenosine, but both ectonucleotidases are rarely co-expressed by human T cells. The expression of CD39 on T cells increases upon T cell activation and is high at sites of inflammation. CD73, in contrast, disappears from the cellular membrane after activation. The possibility that CD73 could act in trans would resolve the conundrum of both enzymes being co-expressed for the degradation of ATP and the generation of adenosine. An enzymatically active soluble form of CD73 has been reported, and AMPase activity has been detected in body fluids of patients with inflammation and cancer. It is not yet clear how CD73, a glycosylphosphatidylinositol (GPI)-anchored protein, is released from the cell membrane, but plausible mechanisms include cleavage by metalloproteinases and shedding mediated by cell-associated phospholipases. Importantly, like many other GPI-anchored proteins, CD73 at the cell membrane is preferentially localized in detergent-resistant domains or lipid rafts, which often contribute to extracellular vesicles (EVs). Indeed, CD73-containing vesicles of different size and origin and with immunomodulatory function have been found in the tumor microenvironment. The occurrence of CD73 as non-cell-bound molecule widens the range of action of this enzyme at sites of inflammation. In this review, we will discuss the generation of non-cell-bound CD73 and its physiological role in inflammation.

AB - Extracellular adenine nucleotides participate in cell-to-cell communication and modulate the immune response. The concerted action of ectonucleotidases CD39 and CD73 plays a major role in the local production of anti-inflammatory adenosine, but both ectonucleotidases are rarely co-expressed by human T cells. The expression of CD39 on T cells increases upon T cell activation and is high at sites of inflammation. CD73, in contrast, disappears from the cellular membrane after activation. The possibility that CD73 could act in trans would resolve the conundrum of both enzymes being co-expressed for the degradation of ATP and the generation of adenosine. An enzymatically active soluble form of CD73 has been reported, and AMPase activity has been detected in body fluids of patients with inflammation and cancer. It is not yet clear how CD73, a glycosylphosphatidylinositol (GPI)-anchored protein, is released from the cell membrane, but plausible mechanisms include cleavage by metalloproteinases and shedding mediated by cell-associated phospholipases. Importantly, like many other GPI-anchored proteins, CD73 at the cell membrane is preferentially localized in detergent-resistant domains or lipid rafts, which often contribute to extracellular vesicles (EVs). Indeed, CD73-containing vesicles of different size and origin and with immunomodulatory function have been found in the tumor microenvironment. The occurrence of CD73 as non-cell-bound molecule widens the range of action of this enzyme at sites of inflammation. In this review, we will discuss the generation of non-cell-bound CD73 and its physiological role in inflammation.

U2 - 10.3389/fimmu.2019.01729

DO - 10.3389/fimmu.2019.01729

M3 - SCORING: Review article

C2 - 31404305

VL - 10

SP - 1729

JO - FRONT IMMUNOL

JF - FRONT IMMUNOL

SN - 1664-3224

ER -