G Protein-Coupled Receptor 15 Expression Is Associated with Myocardial Infarction

  • Tina Haase
  • Christian Müller
  • Bastian Stoffers
  • Philipp Kirn
  • Melanie Waldenberger
  • Frank J Kaiser
  • Mahir Karakas
  • Sangwon V Kim
  • Svenja Voss
  • Philipp S Wild
  • Karl J Lackner
  • Jonas Andersson
  • Stefan Söderberg
  • Diana Lindner (Shared last author)
  • Tanja Zeller (Shared last author)

Abstract

Beyond the influence of lifestyle-related risk factors for myocardial infarction (MI), the mechanisms of genetic predispositions for MI remain unclear. We sought to identify and characterize differentially expressed genes in early-onset MI in a translational approach. In an observational case−control study, transcriptomes from 112 early-onset MI individuals showed upregulated G protein-coupled receptor 15 (GPR15) expression in peripheral blood mononuclear cells compared to controls (fold change = 1.4, p = 1.87 × 10−7). GPR15 expression correlated with intima-media thickness (β = 0.8498, p = 0.111), C-reactive protein (β = 0.2238, p = 0.0052), ejection fraction (β = −0.9991, p = 0.0281) and smoking (β = 0.7259, p = 2.79 × 10−10). The relation between smoking and MI was diminished after the inclusion of GPR15 expression as mediator in mediation analysis (from 1.27 (p = 1.9 × 10−5) to 0.46 (p = 0.21)). The DNA methylation of two GPR15 sites was 1%/5% lower in early-onset MI individuals versus controls (p = 2.37 × 10−6/p = 0.0123), with site CpG3.98251219 significantly predicting risk for incident MI (hazard ratio = 0.992, p = 0.0177). The nucleotide polymorphism rs2230344 (C/T) within GPR15 was associated with early-onset MI (odds ratio = 3.61, p = 0.044). Experimental validation showed 6.3-fold increased Gpr15 expression in an ischemic mouse model (p < 0.05) and 4-fold increased Gpr15 expression in cardiomyocytes under ischemic stress (p < 0.001). After the induction of MI, Gpr15gfp/gfp mice showed lower survival (p = 0.042) and deregulated gene expression for response to hypoxia and signaling pathways. Using a translational approach, our data provide evidence that GPR15 is linked to cardiovascular diseases, mediating the adverse effects of smoking.

Bibliographical data

Original languageEnglish
Article number180
ISSN1661-6596
DOIs
Publication statusPublished - 22.12.2022
PubMed 36613626