Functional analysis of a duplication (p.E63_D69dup) in the switch II region of HRAS: new aspects of the molecular pathogenesis underlying Costello syndrome

Standard

Functional analysis of a duplication (p.E63_D69dup) in the switch II region of HRAS: new aspects of the molecular pathogenesis underlying Costello syndrome. / Lorenz, Sybille; Lissewski, Christina; Simsek-Kiper, Pelin O; Alanay, Yasemin; Boduroglu, Koray; Zenker, Martin; Rosenberger, Georg.

In: HUM MOL GENET, Vol. 22, No. 8, 15.04.2013, p. 1643-53.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{fa5b21ee493d45f19ff733f87c213778,
title = "Functional analysis of a duplication (p.E63_D69dup) in the switch II region of HRAS: new aspects of the molecular pathogenesis underlying Costello syndrome",
abstract = "Costello syndrome is a congenital disorder comprising a characteristic face, severe feeding difficulties, skeletal, cardiac and skin abnormalities, intellectual disability and predisposition to malignancies. It is caused by heterozygous germline HRAS mutations mostly affecting Gly(12) or Gly(13), which impair HRAS-GTPase activity and result in increased downstream signal flow independent of incoming signals. Functional analyses of rarer HRAS mutations identified in individuals with attenuated Costello syndrome phenotypes revealed altered GDP/GTP nucleotide affinities (p.K117R) and inefficient effector binding (p.E37dup). Thus, both phenotypic and functional variability associated with HRAS mutations are evident. Here, we report on a novel heterozygous HRAS germline mutation (c.187_207dup, p.E63_D69dup) in a girl presenting with a phenotype at the milder end of the Costello syndrome spectrum. The p.E63_D69dup mutation impaired co-precipitation of recombinant HRAS with NF1 GTPase-activating protein (GAP) suggesting constitutive HRAS(E63_D69dup) activation due to GAP insensitivity. Indeed, we identified strongly augmented active HRAS(E63_D69dup) that co-precipitated with effectors RAF1, RAL guanine nucleotide dissociation stimulator and phospholipase C1. However, we could not pull down active HRAS(E63_D69dup) using the target protein PIK3CA, indicating a compromised association between active HRAS(E63_D69dup) and PIK3CA. Accordingly, overexpression of HRAS(E63_D69dup) increased steady-state phosphorylation of MEK1/2 and ERK1/2 downstream of RAF, whereas AKT phosphorylation downstream of phosphoinositide 3-kinase (PI3K) was not enhanced. By analyzing signaling dynamics, we found that HRAS(E63_D69dup) has impaired reagibility to stimuli resulting in reduced and disrupted capacity to transduce incoming signals to the RAF-MAPK and PI3K-AKT cascade, respectively. We suggest that disrupted HRAS reagibility, as we demonstrate for the p.E63_D69dup mutation, is a previously unappreciated molecular pathomechanism underlying Costello syndrome.",
keywords = "Abnormalities, Multiple, Adolescent, Animals, Costello Syndrome, Female, GTPase-Activating Proteins, Gene Duplication, Germ-Line Mutation, Humans, Intellectual Disability, MAP Kinase Signaling System, Mice, Neurofibromin 1, Pathology, Molecular, Phosphatidylinositol 3-Kinases, Proto-Oncogene Proteins c-akt, Proto-Oncogene Proteins p21(ras), Signal Transduction",
author = "Sybille Lorenz and Christina Lissewski and Simsek-Kiper, {Pelin O} and Yasemin Alanay and Koray Boduroglu and Martin Zenker and Georg Rosenberger",
year = "2013",
month = apr,
day = "15",
doi = "10.1093/hmg/ddt014",
language = "English",
volume = "22",
pages = "1643--53",
journal = "HUM MOL GENET",
issn = "0964-6906",
publisher = "Oxford University Press",
number = "8",

}

RIS

TY - JOUR

T1 - Functional analysis of a duplication (p.E63_D69dup) in the switch II region of HRAS: new aspects of the molecular pathogenesis underlying Costello syndrome

AU - Lorenz, Sybille

AU - Lissewski, Christina

AU - Simsek-Kiper, Pelin O

AU - Alanay, Yasemin

AU - Boduroglu, Koray

AU - Zenker, Martin

AU - Rosenberger, Georg

PY - 2013/4/15

Y1 - 2013/4/15

N2 - Costello syndrome is a congenital disorder comprising a characteristic face, severe feeding difficulties, skeletal, cardiac and skin abnormalities, intellectual disability and predisposition to malignancies. It is caused by heterozygous germline HRAS mutations mostly affecting Gly(12) or Gly(13), which impair HRAS-GTPase activity and result in increased downstream signal flow independent of incoming signals. Functional analyses of rarer HRAS mutations identified in individuals with attenuated Costello syndrome phenotypes revealed altered GDP/GTP nucleotide affinities (p.K117R) and inefficient effector binding (p.E37dup). Thus, both phenotypic and functional variability associated with HRAS mutations are evident. Here, we report on a novel heterozygous HRAS germline mutation (c.187_207dup, p.E63_D69dup) in a girl presenting with a phenotype at the milder end of the Costello syndrome spectrum. The p.E63_D69dup mutation impaired co-precipitation of recombinant HRAS with NF1 GTPase-activating protein (GAP) suggesting constitutive HRAS(E63_D69dup) activation due to GAP insensitivity. Indeed, we identified strongly augmented active HRAS(E63_D69dup) that co-precipitated with effectors RAF1, RAL guanine nucleotide dissociation stimulator and phospholipase C1. However, we could not pull down active HRAS(E63_D69dup) using the target protein PIK3CA, indicating a compromised association between active HRAS(E63_D69dup) and PIK3CA. Accordingly, overexpression of HRAS(E63_D69dup) increased steady-state phosphorylation of MEK1/2 and ERK1/2 downstream of RAF, whereas AKT phosphorylation downstream of phosphoinositide 3-kinase (PI3K) was not enhanced. By analyzing signaling dynamics, we found that HRAS(E63_D69dup) has impaired reagibility to stimuli resulting in reduced and disrupted capacity to transduce incoming signals to the RAF-MAPK and PI3K-AKT cascade, respectively. We suggest that disrupted HRAS reagibility, as we demonstrate for the p.E63_D69dup mutation, is a previously unappreciated molecular pathomechanism underlying Costello syndrome.

AB - Costello syndrome is a congenital disorder comprising a characteristic face, severe feeding difficulties, skeletal, cardiac and skin abnormalities, intellectual disability and predisposition to malignancies. It is caused by heterozygous germline HRAS mutations mostly affecting Gly(12) or Gly(13), which impair HRAS-GTPase activity and result in increased downstream signal flow independent of incoming signals. Functional analyses of rarer HRAS mutations identified in individuals with attenuated Costello syndrome phenotypes revealed altered GDP/GTP nucleotide affinities (p.K117R) and inefficient effector binding (p.E37dup). Thus, both phenotypic and functional variability associated with HRAS mutations are evident. Here, we report on a novel heterozygous HRAS germline mutation (c.187_207dup, p.E63_D69dup) in a girl presenting with a phenotype at the milder end of the Costello syndrome spectrum. The p.E63_D69dup mutation impaired co-precipitation of recombinant HRAS with NF1 GTPase-activating protein (GAP) suggesting constitutive HRAS(E63_D69dup) activation due to GAP insensitivity. Indeed, we identified strongly augmented active HRAS(E63_D69dup) that co-precipitated with effectors RAF1, RAL guanine nucleotide dissociation stimulator and phospholipase C1. However, we could not pull down active HRAS(E63_D69dup) using the target protein PIK3CA, indicating a compromised association between active HRAS(E63_D69dup) and PIK3CA. Accordingly, overexpression of HRAS(E63_D69dup) increased steady-state phosphorylation of MEK1/2 and ERK1/2 downstream of RAF, whereas AKT phosphorylation downstream of phosphoinositide 3-kinase (PI3K) was not enhanced. By analyzing signaling dynamics, we found that HRAS(E63_D69dup) has impaired reagibility to stimuli resulting in reduced and disrupted capacity to transduce incoming signals to the RAF-MAPK and PI3K-AKT cascade, respectively. We suggest that disrupted HRAS reagibility, as we demonstrate for the p.E63_D69dup mutation, is a previously unappreciated molecular pathomechanism underlying Costello syndrome.

KW - Abnormalities, Multiple

KW - Adolescent

KW - Animals

KW - Costello Syndrome

KW - Female

KW - GTPase-Activating Proteins

KW - Gene Duplication

KW - Germ-Line Mutation

KW - Humans

KW - Intellectual Disability

KW - MAP Kinase Signaling System

KW - Mice

KW - Neurofibromin 1

KW - Pathology, Molecular

KW - Phosphatidylinositol 3-Kinases

KW - Proto-Oncogene Proteins c-akt

KW - Proto-Oncogene Proteins p21(ras)

KW - Signal Transduction

U2 - 10.1093/hmg/ddt014

DO - 10.1093/hmg/ddt014

M3 - SCORING: Journal article

C2 - 23335589

VL - 22

SP - 1643

EP - 1653

JO - HUM MOL GENET

JF - HUM MOL GENET

SN - 0964-6906

IS - 8

ER -