Experimental pain impairs recognition memory irrespective of pain predictability

Standard

Experimental pain impairs recognition memory irrespective of pain predictability. / Forkmann, K; Schmidt, K; Schultz, H; Sommer-Blöchl, Tobias; Bingel, U.

In: EUR J PAIN, Vol. 20, No. 6, 01.07.2016, p. 977-88.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{d92dfc8aafac44568f58ee7e34a55782,
title = "Experimental pain impairs recognition memory irrespective of pain predictability",
abstract = "BACKGROUND: Pain is hardwired to signal threat and tissue damage and therefore automatically attracts attention to initiate withdrawal or defensive behaviour. This well-known interruptive function of pain interferes with cognitive functioning and is modulated by bottom-up and top-down variables. Here, we applied predictable or unpredictable painful heat stimuli simultaneously to the presentation of neutral images to investigate (I) whether the predictability of pain modulated its effect on the encoding of images (episodic memory) and (II) whether subjects remember that certain images have been previously presented with pain (source memory).METHODS: Twenty-four healthy subjects performed a categorization task in which 80 images had to be categorized into living or non-living objects. We compared the processing and encoding of these images during cued and non-cued pain trials as well as cued and non-cued pain-free trials. Effects on recognition performance and source memory for pain were immediately tested using a surprise recognition task.RESULTS: Painful thermal stimulation impaired recognition accuracy (d', recollection, familiarity). This negative effect of pain was positively correlated with the individual expectation of pain interference and the attentional avoidance of pain-related words. However, the interruptive effect of pain was not modulated by the predictability of pain. Source memory for painful stimulation was at chance level, indicating that subjects did not explicitly remember that images had been paired with pain.CONCLUSIONS: Targeting negative expectations and a maladaptive attentional bias for pain-related material might help reducing frequently reported pain-induced cognitive impairments.",
author = "K Forkmann and K Schmidt and H Schultz and Tobias Sommer-Bl{\"o}chl and U Bingel",
note = "{\textcopyright} 2015 European Pain Federation - EFIC{\textregistered}",
year = "2016",
month = jul,
day = "1",
doi = "10.1002/ejp.822",
language = "English",
volume = "20",
pages = "977--88",
journal = "EUR J PAIN",
issn = "1090-3801",
publisher = "W.B. Saunders Ltd",
number = "6",

}

RIS

TY - JOUR

T1 - Experimental pain impairs recognition memory irrespective of pain predictability

AU - Forkmann, K

AU - Schmidt, K

AU - Schultz, H

AU - Sommer-Blöchl, Tobias

AU - Bingel, U

N1 - © 2015 European Pain Federation - EFIC®

PY - 2016/7/1

Y1 - 2016/7/1

N2 - BACKGROUND: Pain is hardwired to signal threat and tissue damage and therefore automatically attracts attention to initiate withdrawal or defensive behaviour. This well-known interruptive function of pain interferes with cognitive functioning and is modulated by bottom-up and top-down variables. Here, we applied predictable or unpredictable painful heat stimuli simultaneously to the presentation of neutral images to investigate (I) whether the predictability of pain modulated its effect on the encoding of images (episodic memory) and (II) whether subjects remember that certain images have been previously presented with pain (source memory).METHODS: Twenty-four healthy subjects performed a categorization task in which 80 images had to be categorized into living or non-living objects. We compared the processing and encoding of these images during cued and non-cued pain trials as well as cued and non-cued pain-free trials. Effects on recognition performance and source memory for pain were immediately tested using a surprise recognition task.RESULTS: Painful thermal stimulation impaired recognition accuracy (d', recollection, familiarity). This negative effect of pain was positively correlated with the individual expectation of pain interference and the attentional avoidance of pain-related words. However, the interruptive effect of pain was not modulated by the predictability of pain. Source memory for painful stimulation was at chance level, indicating that subjects did not explicitly remember that images had been paired with pain.CONCLUSIONS: Targeting negative expectations and a maladaptive attentional bias for pain-related material might help reducing frequently reported pain-induced cognitive impairments.

AB - BACKGROUND: Pain is hardwired to signal threat and tissue damage and therefore automatically attracts attention to initiate withdrawal or defensive behaviour. This well-known interruptive function of pain interferes with cognitive functioning and is modulated by bottom-up and top-down variables. Here, we applied predictable or unpredictable painful heat stimuli simultaneously to the presentation of neutral images to investigate (I) whether the predictability of pain modulated its effect on the encoding of images (episodic memory) and (II) whether subjects remember that certain images have been previously presented with pain (source memory).METHODS: Twenty-four healthy subjects performed a categorization task in which 80 images had to be categorized into living or non-living objects. We compared the processing and encoding of these images during cued and non-cued pain trials as well as cued and non-cued pain-free trials. Effects on recognition performance and source memory for pain were immediately tested using a surprise recognition task.RESULTS: Painful thermal stimulation impaired recognition accuracy (d', recollection, familiarity). This negative effect of pain was positively correlated with the individual expectation of pain interference and the attentional avoidance of pain-related words. However, the interruptive effect of pain was not modulated by the predictability of pain. Source memory for painful stimulation was at chance level, indicating that subjects did not explicitly remember that images had been paired with pain.CONCLUSIONS: Targeting negative expectations and a maladaptive attentional bias for pain-related material might help reducing frequently reported pain-induced cognitive impairments.

U2 - 10.1002/ejp.822

DO - 10.1002/ejp.822

M3 - SCORING: Journal article

C2 - 26685005

VL - 20

SP - 977

EP - 988

JO - EUR J PAIN

JF - EUR J PAIN

SN - 1090-3801

IS - 6

ER -