Experimental and DFT studies on competitive heterocyclic rearrangements. Part 2: a one-atom side-chain versus the classic three-atom side-chain (Boulton-Katritzky) ring rearrangement of 3-acylamino-1,2,4-oxadiazoles.

Standard

Experimental and DFT studies on competitive heterocyclic rearrangements. Part 2: a one-atom side-chain versus the classic three-atom side-chain (Boulton-Katritzky) ring rearrangement of 3-acylamino-1,2,4-oxadiazoles. / Pace, Andrea; Pibiri, Ivana; Piccionello, Antonio Palumbo; Buscemi, Silvestre; Vivona, Nicolo; Barone, Giampaolo.

In: J ORG CHEM, Vol. 72, No. 20, 20, 2007, p. 7656-7666.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{caf690d9009048a9a8ce885c29cccf45,
title = "Experimental and DFT studies on competitive heterocyclic rearrangements. Part 2: a one-atom side-chain versus the classic three-atom side-chain (Boulton-Katritzky) ring rearrangement of 3-acylamino-1,2,4-oxadiazoles.",
abstract = "The experimental investigation of the base-catalyzed rearrangements of 3-acylamino-1,2,4-oxadiazoles evidenced a new reaction pathway which competes with the well-known ring-degenerate Boulton-Katritzky rearrangement (BKR). The new reaction consists of a one-atom side-chain rearrangement that is base-activated, occurs at a higher temperature than the BKR, and irreversibly leads to the corresponding 2-acylamino-1,3,4-oxadiazoles. An extensive DFT study is reported to elucidate the proposed reaction mechanism and to compare the three possible inherent routes: (i) the reversible three-atom side-chain ring-degenerate BKR, (ii) the ring contraction-ring expansion route (RCRE), and (iii) the one-atom side-chain rearrangement. The results of the computational investigation point out that the latter route is kinetically preferred over the RCRE and can be considered as the ground-state analogue of a previously proposed C(3)-N(2) migration-nucleophilic attack-cyclization (MNAC) photochemically activated pathway. The MNAC consists of the formation of a diazirine intermediate, involving the exocyclic nitrogen, that eventually evolves into a carbodiimide intermediate (migration); the latter undergoes a single intramolecular nucleophilic attack-cyclization step leading to the final 2-acylamino-1,3,4-oxadiazole.",
author = "Andrea Pace and Ivana Pibiri and Piccionello, {Antonio Palumbo} and Silvestre Buscemi and Nicolo Vivona and Giampaolo Barone",
year = "2007",
language = "Deutsch",
volume = "72",
pages = "7656--7666",
journal = "J ORG CHEM",
issn = "0022-3263",
publisher = "American Chemical Society",
number = "20",

}

RIS

TY - JOUR

T1 - Experimental and DFT studies on competitive heterocyclic rearrangements. Part 2: a one-atom side-chain versus the classic three-atom side-chain (Boulton-Katritzky) ring rearrangement of 3-acylamino-1,2,4-oxadiazoles.

AU - Pace, Andrea

AU - Pibiri, Ivana

AU - Piccionello, Antonio Palumbo

AU - Buscemi, Silvestre

AU - Vivona, Nicolo

AU - Barone, Giampaolo

PY - 2007

Y1 - 2007

N2 - The experimental investigation of the base-catalyzed rearrangements of 3-acylamino-1,2,4-oxadiazoles evidenced a new reaction pathway which competes with the well-known ring-degenerate Boulton-Katritzky rearrangement (BKR). The new reaction consists of a one-atom side-chain rearrangement that is base-activated, occurs at a higher temperature than the BKR, and irreversibly leads to the corresponding 2-acylamino-1,3,4-oxadiazoles. An extensive DFT study is reported to elucidate the proposed reaction mechanism and to compare the three possible inherent routes: (i) the reversible three-atom side-chain ring-degenerate BKR, (ii) the ring contraction-ring expansion route (RCRE), and (iii) the one-atom side-chain rearrangement. The results of the computational investigation point out that the latter route is kinetically preferred over the RCRE and can be considered as the ground-state analogue of a previously proposed C(3)-N(2) migration-nucleophilic attack-cyclization (MNAC) photochemically activated pathway. The MNAC consists of the formation of a diazirine intermediate, involving the exocyclic nitrogen, that eventually evolves into a carbodiimide intermediate (migration); the latter undergoes a single intramolecular nucleophilic attack-cyclization step leading to the final 2-acylamino-1,3,4-oxadiazole.

AB - The experimental investigation of the base-catalyzed rearrangements of 3-acylamino-1,2,4-oxadiazoles evidenced a new reaction pathway which competes with the well-known ring-degenerate Boulton-Katritzky rearrangement (BKR). The new reaction consists of a one-atom side-chain rearrangement that is base-activated, occurs at a higher temperature than the BKR, and irreversibly leads to the corresponding 2-acylamino-1,3,4-oxadiazoles. An extensive DFT study is reported to elucidate the proposed reaction mechanism and to compare the three possible inherent routes: (i) the reversible three-atom side-chain ring-degenerate BKR, (ii) the ring contraction-ring expansion route (RCRE), and (iii) the one-atom side-chain rearrangement. The results of the computational investigation point out that the latter route is kinetically preferred over the RCRE and can be considered as the ground-state analogue of a previously proposed C(3)-N(2) migration-nucleophilic attack-cyclization (MNAC) photochemically activated pathway. The MNAC consists of the formation of a diazirine intermediate, involving the exocyclic nitrogen, that eventually evolves into a carbodiimide intermediate (migration); the latter undergoes a single intramolecular nucleophilic attack-cyclization step leading to the final 2-acylamino-1,3,4-oxadiazole.

M3 - SCORING: Zeitschriftenaufsatz

VL - 72

SP - 7656

EP - 7666

JO - J ORG CHEM

JF - J ORG CHEM

SN - 0022-3263

IS - 20

M1 - 20

ER -