Establishment of a 3D Model to Characterize the Radioresponse of Patient-Derived Glioblastoma Cells

Standard

Establishment of a 3D Model to Characterize the Radioresponse of Patient-Derived Glioblastoma Cells. / Strand, Zoe; Schrickel, Finn; Dobiasch, Sophie; Thomsen, Andreas R; Steiger, Katja; Gempt, Jens; Meyer, Bernhard; Combs, Stephanie E; Schilling, Daniela.

In: CANCERS, Vol. 15, No. 16, 4051, 10.08.2023.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

Strand, Z, Schrickel, F, Dobiasch, S, Thomsen, AR, Steiger, K, Gempt, J, Meyer, B, Combs, SE & Schilling, D 2023, 'Establishment of a 3D Model to Characterize the Radioresponse of Patient-Derived Glioblastoma Cells', CANCERS, vol. 15, no. 16, 4051. https://doi.org/10.3390/cancers15164051

APA

Strand, Z., Schrickel, F., Dobiasch, S., Thomsen, A. R., Steiger, K., Gempt, J., Meyer, B., Combs, S. E., & Schilling, D. (2023). Establishment of a 3D Model to Characterize the Radioresponse of Patient-Derived Glioblastoma Cells. CANCERS, 15(16), [4051]. https://doi.org/10.3390/cancers15164051

Vancouver

Bibtex

@article{1b870705ef0a44c2bda3f106489db670,
title = "Establishment of a 3D Model to Characterize the Radioresponse of Patient-Derived Glioblastoma Cells",
abstract = "Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite modern, multimodal therapeutic options of surgery, chemotherapy, tumor-treating fields (TTF), and radiotherapy, the 5-year survival is below 10%. In order to develop new therapies, better preclinical models are needed that mimic the complexity of a tumor. In this work, we established a novel three-dimensional (3D) model for patient-derived GBM cell lines. To analyze the volume and growth pattern of primary GBM cells in 3D culture, a CoSeedisTM culture system was used, and radiation sensitivity in comparison to conventional 2D colony formation assay (CFA) was analyzed. Both culture systems revealed a dose-dependent reduction in survival, but the high variance in colony size and shape prevented reliable evaluation of the 2D cultures. In contrast, the size of 3D spheroids could be measured accurately. Immunostaining of spheroids grown in the 3D culture system showed an increase in the DNA double-strand-break marker γH2AX one hour after irradiation. After 24 h, a decrease in DNA damage was observed, indicating active repair mechanisms. In summary, this new translational 3D model may better reflect the tumor complexity and be useful for analyzing the growth, radiosensitivity, and DNA repair of patient-derived GBM cells.",
author = "Zoe Strand and Finn Schrickel and Sophie Dobiasch and Thomsen, {Andreas R} and Katja Steiger and Jens Gempt and Bernhard Meyer and Combs, {Stephanie E} and Daniela Schilling",
year = "2023",
month = aug,
day = "10",
doi = "10.3390/cancers15164051",
language = "English",
volume = "15",
journal = "CANCERS",
issn = "2072-6694",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "16",

}

RIS

TY - JOUR

T1 - Establishment of a 3D Model to Characterize the Radioresponse of Patient-Derived Glioblastoma Cells

AU - Strand, Zoe

AU - Schrickel, Finn

AU - Dobiasch, Sophie

AU - Thomsen, Andreas R

AU - Steiger, Katja

AU - Gempt, Jens

AU - Meyer, Bernhard

AU - Combs, Stephanie E

AU - Schilling, Daniela

PY - 2023/8/10

Y1 - 2023/8/10

N2 - Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite modern, multimodal therapeutic options of surgery, chemotherapy, tumor-treating fields (TTF), and radiotherapy, the 5-year survival is below 10%. In order to develop new therapies, better preclinical models are needed that mimic the complexity of a tumor. In this work, we established a novel three-dimensional (3D) model for patient-derived GBM cell lines. To analyze the volume and growth pattern of primary GBM cells in 3D culture, a CoSeedisTM culture system was used, and radiation sensitivity in comparison to conventional 2D colony formation assay (CFA) was analyzed. Both culture systems revealed a dose-dependent reduction in survival, but the high variance in colony size and shape prevented reliable evaluation of the 2D cultures. In contrast, the size of 3D spheroids could be measured accurately. Immunostaining of spheroids grown in the 3D culture system showed an increase in the DNA double-strand-break marker γH2AX one hour after irradiation. After 24 h, a decrease in DNA damage was observed, indicating active repair mechanisms. In summary, this new translational 3D model may better reflect the tumor complexity and be useful for analyzing the growth, radiosensitivity, and DNA repair of patient-derived GBM cells.

AB - Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Despite modern, multimodal therapeutic options of surgery, chemotherapy, tumor-treating fields (TTF), and radiotherapy, the 5-year survival is below 10%. In order to develop new therapies, better preclinical models are needed that mimic the complexity of a tumor. In this work, we established a novel three-dimensional (3D) model for patient-derived GBM cell lines. To analyze the volume and growth pattern of primary GBM cells in 3D culture, a CoSeedisTM culture system was used, and radiation sensitivity in comparison to conventional 2D colony formation assay (CFA) was analyzed. Both culture systems revealed a dose-dependent reduction in survival, but the high variance in colony size and shape prevented reliable evaluation of the 2D cultures. In contrast, the size of 3D spheroids could be measured accurately. Immunostaining of spheroids grown in the 3D culture system showed an increase in the DNA double-strand-break marker γH2AX one hour after irradiation. After 24 h, a decrease in DNA damage was observed, indicating active repair mechanisms. In summary, this new translational 3D model may better reflect the tumor complexity and be useful for analyzing the growth, radiosensitivity, and DNA repair of patient-derived GBM cells.

U2 - 10.3390/cancers15164051

DO - 10.3390/cancers15164051

M3 - SCORING: Journal article

C2 - 37627079

VL - 15

JO - CANCERS

JF - CANCERS

SN - 2072-6694

IS - 16

M1 - 4051

ER -