Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-Pérot resonators to plasmonic nano-antennas

Standard

Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-Pérot resonators to plasmonic nano-antennas. / Kern, Andreas M; Zhang, Dai; Brecht, Marc; Chizhik, Alexey I; Failla, Antonio Virgilio; Wackenhut, Frank; Meixner, Alfred J.

In: CHEM SENSES, Vol. 43, No. 4, 21.02.2014, p. 1263-86.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{273cb6b9736a45318820973849adb375,
title = "Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-P{\'e}rot resonators to plasmonic nano-antennas",
abstract = "While single-molecule fluorescence from emitters with high quantum efficiencies such as organic dye molecules can easily be detected by modern apparatus, many less efficient emission processes such as Raman scattering and metal luminescence require dramatic enhancement to exceed the single-particle detection limit. This enhancement can be achieved using resonant optical systems such as plasmonic particles or nanoantennas, the study of which has led to substantial progress in understanding the interaction of quantum emitters with their electromagnetic environment. This review is focused on the advances in measurement techniques and potential applications enabled by a deeper understanding of fundamental optical interaction processes occurring between single quantum systems on the nanoscale. While the affected phenomena are numerous, including molecular fluorescence and also exciton luminescence and Raman scattering, the interaction itself can often be described from a unified point of view. Starting from a single underlying model, this work elucidates the dramatic enhancement potential of plasmonic tips and nanoparticles and also the more deterministic influence of a Fabry-P{\'e}rot microresonator. With the extensive knowledge of the radiative behavior of a quantum system, insight can be gained into nonradiative factors as well, such as energy transfer phenomena or spatial and chemical configurations in single molecules.",
author = "Kern, {Andreas M} and Dai Zhang and Marc Brecht and Chizhik, {Alexey I} and Failla, {Antonio Virgilio} and Frank Wackenhut and Meixner, {Alfred J}",
year = "2014",
month = feb,
day = "21",
doi = "10.1039/c3cs60357a",
language = "English",
volume = "43",
pages = "1263--86",
journal = "CHEM SENSES",
issn = "0379-864X",
publisher = "Oxford University Press",
number = "4",

}

RIS

TY - JOUR

T1 - Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-Pérot resonators to plasmonic nano-antennas

AU - Kern, Andreas M

AU - Zhang, Dai

AU - Brecht, Marc

AU - Chizhik, Alexey I

AU - Failla, Antonio Virgilio

AU - Wackenhut, Frank

AU - Meixner, Alfred J

PY - 2014/2/21

Y1 - 2014/2/21

N2 - While single-molecule fluorescence from emitters with high quantum efficiencies such as organic dye molecules can easily be detected by modern apparatus, many less efficient emission processes such as Raman scattering and metal luminescence require dramatic enhancement to exceed the single-particle detection limit. This enhancement can be achieved using resonant optical systems such as plasmonic particles or nanoantennas, the study of which has led to substantial progress in understanding the interaction of quantum emitters with their electromagnetic environment. This review is focused on the advances in measurement techniques and potential applications enabled by a deeper understanding of fundamental optical interaction processes occurring between single quantum systems on the nanoscale. While the affected phenomena are numerous, including molecular fluorescence and also exciton luminescence and Raman scattering, the interaction itself can often be described from a unified point of view. Starting from a single underlying model, this work elucidates the dramatic enhancement potential of plasmonic tips and nanoparticles and also the more deterministic influence of a Fabry-Pérot microresonator. With the extensive knowledge of the radiative behavior of a quantum system, insight can be gained into nonradiative factors as well, such as energy transfer phenomena or spatial and chemical configurations in single molecules.

AB - While single-molecule fluorescence from emitters with high quantum efficiencies such as organic dye molecules can easily be detected by modern apparatus, many less efficient emission processes such as Raman scattering and metal luminescence require dramatic enhancement to exceed the single-particle detection limit. This enhancement can be achieved using resonant optical systems such as plasmonic particles or nanoantennas, the study of which has led to substantial progress in understanding the interaction of quantum emitters with their electromagnetic environment. This review is focused on the advances in measurement techniques and potential applications enabled by a deeper understanding of fundamental optical interaction processes occurring between single quantum systems on the nanoscale. While the affected phenomena are numerous, including molecular fluorescence and also exciton luminescence and Raman scattering, the interaction itself can often be described from a unified point of view. Starting from a single underlying model, this work elucidates the dramatic enhancement potential of plasmonic tips and nanoparticles and also the more deterministic influence of a Fabry-Pérot microresonator. With the extensive knowledge of the radiative behavior of a quantum system, insight can be gained into nonradiative factors as well, such as energy transfer phenomena or spatial and chemical configurations in single molecules.

U2 - 10.1039/c3cs60357a

DO - 10.1039/c3cs60357a

M3 - SCORING: Journal article

C2 - 24365864

VL - 43

SP - 1263

EP - 1286

JO - CHEM SENSES

JF - CHEM SENSES

SN - 0379-864X

IS - 4

ER -