Engineering bioartificial tracheal tissue using hybrid fibroblast-mesenchymal stem cell cultures in collagen hydrogels.

  • Hiroshi Naito
  • Takashi Tojo
  • Michitaka Kimura
  • Yoshiko Dohi
  • Wolfram-Hubertus Zimmermann
  • Thomas Eschenhagen
  • Shigeki Taniguchi

Abstract

We aimed at providing the first in vitro and in vivo proof-of-concept for a novel tracheal tissue engineering technology. We hypothesized that bioartificial trachea (BT) could be generated from fibroblast and collagen hydrogels, mechanically supported by osteogenically-induced mesenchymal stem cells (MSC) in ring-shaped 3D-hydrogel cultures, and applied in an experimental model of rat trachea injury. Tube-shaped tissue was constructed from mixtures of rat fibroblasts and collagen in custom-made casting molds. The tissue was characterized histologically and mechanically. Ring-shaped tissue was constructed from mixtures of rat MSCs and collagen and fused to the tissue-engineered tubes to function as reinforcement. Stiffness of the biological reinforcement was enhanced by induction of osteogeneic differentiation in MSCs. Osteogenic differentiation was evaluated by assessment of osteocalcin (OC) secretion, quantification of calcium (Ca) deposit, and mechanical testing. Finally, BT was implanted to bridge a surgically-induced tracheal defect. A three-layer tubular tissue structure composed of an interconnected network of fibroblasts was constructed. Tissue collapse was prevented by the placement of MSC-containing ring-shaped tissue reinforcement around the tubular constructs. Osteogenic induction resulted in high OC secretion, high Ca deposit, and enhanced construct stiffness. Ultimately, when BT was implanted, recipient rats were able to breathe spontaneously.

Bibliographical data

Original languageGerman
Article number2
ISSN1569-9293
Publication statusPublished - 2011
pubmed 21098511