DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice.

  • Basem M Abdallah
  • Nicholas Ditzel
  • Amer Mahmood
  • Adiba Isa
  • Gunnhildur A Traustadottir
  • Arndt F Schilling
  • María-José Ruiz-Hidalgo
  • Jorge Laborda
  • Michael Amling
  • Moustapha Kassem

Abstract

Delta-like 1/fetal antigen 1 (DLK1/FA-1) is a transmembrane protein belonging to the Notch/Delta family that acts as a membrane-associated or a soluble protein to regulate regeneration of a number of adult tissues. Here we examined the role of DLK1/FA-1 in bone biology using osteoblast-specific Dlk1-overexpressing mice (Col1-Dlk1). Col1-Dlk1 mice displayed growth retardation and significantly reduced total body weight and bone mineral density (BMD). Micro-computed tomographis (µCT) scanning revealed a reduced trabecular and cortical bone volume fraction. Tissue-level histomorphometric analysis demonstrated decreased bone-formation rate and enhanced bone resorption in Col1-Dlk1 mice compared with wild-type mice. At a cellular level, Dlk1 markedly reduced the total number of bone marrow (BM)-derived colony-forming units fibroblasts (CFU-Fs), as well as their osteogenic capacity. In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of proinflammatory bone-resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of Dlk1 in the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1 production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss.

Bibliographical data

Original languageEnglish
Article number7
ISSN0884-0431
Publication statusPublished - 2011
pubmed 21308776