Creatine uptake in mouse hearts with genetically altered creatine levels.

  • Ten Hove Michiel
  • Kimmo Makinen
  • Liam Sebag-Montefiore
  • Imre Hunyor
  • Alexandra Fischer
  • Julie Wallis
  • Dirk Isbrandt
  • Craig Lygate
  • Stefan Neubauer

Related Research units

Abstract

Creatine plays an important role in energy metabolism in the heart. Cardiomyocytes accumulate creatine via a specific creatine transporter (CrT), the capacity of which is reduced in the failing heart, resulting in lower myocardial creatine concentration. Therefore, to gain insight into how the CrT is regulated, we studied two mouse models of severely altered myocardial creatine levels. Cardiac creatine uptake levels were measured in isolated hearts from creatine-free guanidinoacetate-N-methyl transferase knock out (GAMT(-/-)) mice and from mice overexpressing the myocardial CrT (CrT-OE) using (14)C-radiolabeled creatine. CrT mRNA levels were measured using real time RT-PCR and creatine levels with HPLC. Hearts from GAMT(-/-) mice showed a 7-fold increase in V(max) of creatine uptake and a 1.4-fold increase in CrT mRNA levels. The increase in Cr uptake and in CrT mRNA levels, however, was almost completely prevented when mice were fed a creatine supplemented diet, indicating that creatine uptake is subject to negative feedback regulation. Cardiac creatine uptake levels in CrT-OE mice were increased on average 2.7-fold, showing a considerable variation, in line with a similar variation in creatine content. Total CrT mRNA levels correlated well with myocardial creatine content (r=0.67; p

Bibliographical data

Original languageGerman
Article number3
ISSN0022-2828
Publication statusPublished - 2008
pubmed 18602925