Corticospinal control from M1 and PMv areas on inhibitory cervical propriospinal neurons in humans

  • Louis-Solal Giboin
  • Sina Sangari
  • Alexandra Lackmy-Vallée
  • Arnaud Messé
  • Pascale Pradat-Diehl
  • Véronique Marchand-Pauvert

Abstract

Inhibitory propriospinal neurons with diffuse projections onto upper limb motoneurons have been revealed in humans using peripheral nerve stimulation. This system is supposed to mediate descending inhibition to motoneurons, to prevent unwilling muscle activity. However, the corticospinal control onto inhibitory propriospinal neurons has never been investigated so far in humans. We addressed the question whether inhibitory cervical propriospinal neurons receive corticospinal inputs from primary motor (M1) and ventral premotor areas (PMv) using spatial facilitation method. We have stimulated M1 or PMv using transcranial magnetic stimulation (TMS) and/or median nerve whose afferents are known to activate inhibitory propriospinal neurons. Potential input convergence was evaluated by studying the change in monosynaptic reflexes produced in wrist extensor electromyogram (EMG) after isolated and combined stimuli in 17 healthy subjects. Then, to determine whether PMv controlled propriospinal neurons directly or through PMv-M1 interaction, we tested the connectivity between PMv and propriospinal neurons after a functional disruption of M1 produced by paired continuous theta burst stimulation (cTBS). TMS over M1 or PMv produced reflex inhibition significantly stronger on combined stimulations, compared to the algebraic sum of effects induced by isolated stimuli. The extra-inhibition induced by PMv stimulation remained even after cTBS which depressed M1 excitability. The extra-inhibition suggests the existence of input convergence between peripheral afferents and corticospinal inputs onto inhibitory propriospinal neurons. Our results support the existence of direct descending influence from M1 and PMv onto inhibitory propriospinal neurons in humans, possibly though direct corticospinal or via reticulospinal inputs.

Bibliographical data

Original languageEnglish
ISSN2051-817X
DOIs
Publication statusPublished - 11.2017
PubMed 29084839