Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells

Standard

Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells. / Friedemann, Thomas; Otto, Benjamin; Klätschke, Kristin; Schumacher, Udo; Yi, Tao; Kai-Man Leung, Alexander; Efferth, Thomas; Schröder, Sven.

In: J ETHNOPHARMACOL, Vol. 155, No. 1, 12.06.2014, p. 607-615.

Research output: SCORING: Contribution to journalSCORING: Journal articleResearchpeer-review

Harvard

Friedemann, T, Otto, B, Klätschke, K, Schumacher, U, Yi, T, Kai-Man Leung, A, Efferth, T & Schröder, S 2014, 'Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells', J ETHNOPHARMACOL, vol. 155, no. 1, pp. 607-615. https://doi.org/10.1016/j.jep.2014.06.004

APA

Friedemann, T., Otto, B., Klätschke, K., Schumacher, U., Yi, T., Kai-Man Leung, A., Efferth, T., & Schröder, S. (2014). Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells. J ETHNOPHARMACOL, 155(1), 607-615. https://doi.org/10.1016/j.jep.2014.06.004

Vancouver

Bibtex

@article{076e8741153746b288ed7924da18eedb,
title = "Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells",
abstract = "ETHNOPHARMACOLOGICAL RELEVANCE: The dried rhizome of Coptis chinensis Franch. (family Ranunculaceae) is traditionally used in Chinese medicine for the treatment of inflammatory diseases and diabetes. Recent studies showed a variety of activities of Coptis chinensis Franch. alkaloids, including neuroprotective, neuroregenerative, anti-diabetic, anti-oxidative and anti-inflammatory effects. However, there is no report on the neuroprotective effect of Coptis chinensis Franch. watery extract against tert-butylhydroperoxide (t-BOOH) induced oxidative damage. The aim of the study is to investigate neuroprotective properties of Coptis chinensis Franch. rhizome watery extract (CRE) and to evaluate its potential mechanism of action.MATERIALS AND METHODS: Neuroprotective properties on t-BOOH induced oxidative stress were investigated in SH-SY5Y human neuroblastoma cells. Cells were pretreated with CRE for 2h or 24h followed by 2h of treatment with t-BOOH. To evaluate the neuroprotective effect of CRE, cell viability, cellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the apoptotic rate were determined and microarray analyses, as well as qRT-PCR analyses were conducted.RESULTS: Two hours of exposure to 100µM t-BOOH resulted in a significant reduction of cell viability, increased apoptotic rate, declined mitochondrial membrane potential (MMP) and increased ROS production. Reduction of cell viability, increased apoptotic rate and declined mitochondrial membrane potential (MMP) could be significantly reduced in cells pretreated with CRE (100µg/ml) for 2h or 24h ahead of t-BOOH exposure with the greatest effect after 24h of pretreatment; however ROS production was not changed significantly. Furthermore, microarray analyses revealed that the expressions of 2 genes; thioredoxin-interacting protein (TXNIP) and mitochondrially encoded NADH dehydrogenase 1, were significantly regulated. Down regulation of TXNIP was confirmed by qRT-PCR.CONCLUSION: Due to its neuroprotective properties CRE might be a potential therapeutic agent for the prevention or amelioration of diseases like diabetic neuropathy and neurodegenerative disorders like Alzheimer and Parkinsons disease.",
author = "Thomas Friedemann and Benjamin Otto and Kristin Kl{\"a}tschke and Udo Schumacher and Tao Yi and {Kai-Man Leung}, Alexander and Thomas Efferth and Sven Schr{\"o}der",
note = "Copyright {\textcopyright} 2014 Elsevier Ireland Ltd. All rights reserved.",
year = "2014",
month = jun,
day = "12",
doi = "10.1016/j.jep.2014.06.004",
language = "English",
volume = "155",
pages = "607--615",
journal = "J ETHNOPHARMACOL",
issn = "0378-8741",
publisher = "Elsevier Ireland Ltd",
number = "1",

}

RIS

TY - JOUR

T1 - Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells

AU - Friedemann, Thomas

AU - Otto, Benjamin

AU - Klätschke, Kristin

AU - Schumacher, Udo

AU - Yi, Tao

AU - Kai-Man Leung, Alexander

AU - Efferth, Thomas

AU - Schröder, Sven

N1 - Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

PY - 2014/6/12

Y1 - 2014/6/12

N2 - ETHNOPHARMACOLOGICAL RELEVANCE: The dried rhizome of Coptis chinensis Franch. (family Ranunculaceae) is traditionally used in Chinese medicine for the treatment of inflammatory diseases and diabetes. Recent studies showed a variety of activities of Coptis chinensis Franch. alkaloids, including neuroprotective, neuroregenerative, anti-diabetic, anti-oxidative and anti-inflammatory effects. However, there is no report on the neuroprotective effect of Coptis chinensis Franch. watery extract against tert-butylhydroperoxide (t-BOOH) induced oxidative damage. The aim of the study is to investigate neuroprotective properties of Coptis chinensis Franch. rhizome watery extract (CRE) and to evaluate its potential mechanism of action.MATERIALS AND METHODS: Neuroprotective properties on t-BOOH induced oxidative stress were investigated in SH-SY5Y human neuroblastoma cells. Cells were pretreated with CRE for 2h or 24h followed by 2h of treatment with t-BOOH. To evaluate the neuroprotective effect of CRE, cell viability, cellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the apoptotic rate were determined and microarray analyses, as well as qRT-PCR analyses were conducted.RESULTS: Two hours of exposure to 100µM t-BOOH resulted in a significant reduction of cell viability, increased apoptotic rate, declined mitochondrial membrane potential (MMP) and increased ROS production. Reduction of cell viability, increased apoptotic rate and declined mitochondrial membrane potential (MMP) could be significantly reduced in cells pretreated with CRE (100µg/ml) for 2h or 24h ahead of t-BOOH exposure with the greatest effect after 24h of pretreatment; however ROS production was not changed significantly. Furthermore, microarray analyses revealed that the expressions of 2 genes; thioredoxin-interacting protein (TXNIP) and mitochondrially encoded NADH dehydrogenase 1, were significantly regulated. Down regulation of TXNIP was confirmed by qRT-PCR.CONCLUSION: Due to its neuroprotective properties CRE might be a potential therapeutic agent for the prevention or amelioration of diseases like diabetic neuropathy and neurodegenerative disorders like Alzheimer and Parkinsons disease.

AB - ETHNOPHARMACOLOGICAL RELEVANCE: The dried rhizome of Coptis chinensis Franch. (family Ranunculaceae) is traditionally used in Chinese medicine for the treatment of inflammatory diseases and diabetes. Recent studies showed a variety of activities of Coptis chinensis Franch. alkaloids, including neuroprotective, neuroregenerative, anti-diabetic, anti-oxidative and anti-inflammatory effects. However, there is no report on the neuroprotective effect of Coptis chinensis Franch. watery extract against tert-butylhydroperoxide (t-BOOH) induced oxidative damage. The aim of the study is to investigate neuroprotective properties of Coptis chinensis Franch. rhizome watery extract (CRE) and to evaluate its potential mechanism of action.MATERIALS AND METHODS: Neuroprotective properties on t-BOOH induced oxidative stress were investigated in SH-SY5Y human neuroblastoma cells. Cells were pretreated with CRE for 2h or 24h followed by 2h of treatment with t-BOOH. To evaluate the neuroprotective effect of CRE, cell viability, cellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the apoptotic rate were determined and microarray analyses, as well as qRT-PCR analyses were conducted.RESULTS: Two hours of exposure to 100µM t-BOOH resulted in a significant reduction of cell viability, increased apoptotic rate, declined mitochondrial membrane potential (MMP) and increased ROS production. Reduction of cell viability, increased apoptotic rate and declined mitochondrial membrane potential (MMP) could be significantly reduced in cells pretreated with CRE (100µg/ml) for 2h or 24h ahead of t-BOOH exposure with the greatest effect after 24h of pretreatment; however ROS production was not changed significantly. Furthermore, microarray analyses revealed that the expressions of 2 genes; thioredoxin-interacting protein (TXNIP) and mitochondrially encoded NADH dehydrogenase 1, were significantly regulated. Down regulation of TXNIP was confirmed by qRT-PCR.CONCLUSION: Due to its neuroprotective properties CRE might be a potential therapeutic agent for the prevention or amelioration of diseases like diabetic neuropathy and neurodegenerative disorders like Alzheimer and Parkinsons disease.

U2 - 10.1016/j.jep.2014.06.004

DO - 10.1016/j.jep.2014.06.004

M3 - SCORING: Journal article

C2 - 24929105

VL - 155

SP - 607

EP - 615

JO - J ETHNOPHARMACOL

JF - J ETHNOPHARMACOL

SN - 0378-8741

IS - 1

ER -